Sodium Polyanethol Sulfonate Modulates Natural Transformation of SigH-Expressing Staphylococcus aureus

Abstract

Expression of genes required for natural genetic competence in Staphylococcus aureus is controlled by an alternative transcription sigma factor, SigH. However, even in the SigH-expressing cells, the DNA transformation efficiency varies depending on culture conditions. We report here that cells grown in the competence-inducing medium (CS2 medium) exhibit enlarged morphology with disintegrated cell walls. Notably, an autolysis inhibitor, Sodium Polyanethol Sulfonate (SPS), facilitated transformation in CS2 medium in a dose-dependent manner, suggesting the involvement of the cell wall metabolism in transformation. However, the transformation efficiency of cells grown in TSB was not improved by physical or enzymatic damage on the cell walls.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Cafini F, Romero VM, Morikawa K (2017) Mechanisms of horizontal gene transfer, in The rise of virulence and antibiotic resistance in Staphylococcus aureus. InTech

  2. 2.

    Morikawa K, Inose Y, Okamura H, Maruyama A, Hayashi H, Takeyasu K et al (2003) A new staphylococcal sigma factor in the conserved gene cassette: functional significance and implication for the evolutionary processes. Genes Cells 8:699–712

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Morikawa K, Takemura AJ, Inose Y, Tsai M, Nguyen Thi le T, Ohta T et al (2012) Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureus. PLoS Pathog 8:e1003003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Nguyen Thi le T, Romero VM, Morikawa K (2016) Cell wall-affecting antibiotics modulate natural transformation in SigH-expressing Staphylococcus aureus. J Antibiot 69:464–466

    Article  Google Scholar 

  5. 5.

    Anderson RC, Haverkamp RG, Yu PL (2004) Investigation of morphological changes to Staphylococcus aureus induced by ovine-derived antimicrobial peptides using TEM and AFM. FEMS Microbiol Lett 240:105–110

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Mani N, Tobin P, Jayaswal RK (1993) Isolation and characterization of autolysis-defective mutants of Staphylococcus aureus created by Tn917-lacZ mutagenesis. J Bacteriol 175:1493–1499

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Sugai M, Akiyama T, Komatsuzawa H, Miyake Y, Suginaka H (1990) Characterization of sodium dodecyl sulfate-stable Staphylococcus aureus bacteriolytic enzymes by polyacrylamide gel electrophoresis. J Bacteriol 172:6494–6498

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Qoronfleh MW, Wilkinson BJ (1986) Effects of growth of methicillin-resistant and -susceptible Staphylococcus aureus in the presence of beta-lactams on peptidoglycan structure and susceptibility to lytic enzymes. Antimicrob Agents Chemother 29:250–257

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Wecke J, Lahav M, Ginsburg I, Kwa E, Giesbrecht P (1986) Inhibition of wall autolysis of staphylococci by sodium polyanethole sulfonate “liquoid”. Arch Microbiol 144:110–115

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Dubrac S, Boneca IG, Poupel O, Msadek T (2007) New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol 189:8257–8269

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kumar JK (2008) Lysostaphin: an antistaphylococcal agent. Appl Microbiol Biotechnol 80:555–561

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Johnston C, Martin B, Fichant G, Polard P, Claverys JP (2014) Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 12:181–196

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Fagerlund A, Granum PE, Havarstein LS (2014) Staphylococcus aureus competence genes: mapping of the SigH, ComK1 and ComK2 regulons by transcriptome sequencing. Mol Microbiol 94:557–579

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Briley K Jr, Prepiak P, Dias MJ, Hahn J, Dubnau D (2011) Maf acts downstream of ComGA to arrest cell division in competent cells of B. subtilis. Mol Microbiol 81:23–39

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hahn J, Tanner AW, Carabetta VJ, Cristea IM, Dubnau D (2015) ComGA-RelA interaction and persistence in the Bacillus subtilis K-state. Mol Microbiol 97:454–471

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Bayles KW (2007) The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5:721–726

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ranhand JM (1973) Autolytic activity and its association with the development of competence in group H streptococci. J Bacteriol 115:607–614

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    van der Kooi-Pol MM, Reilman E, Sibbald MJ, Veenstra-Kyuchukova YK, Kouwen TR, Buist G et al (2012) Requirement of signal peptidase ComC and thiol-disulfide oxidoreductase DsbA for optimal cell surface display of pseudopilin ComGC in Staphylococcus aureus. Appl Environ Microbiol 78:7124–7127

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Berge MJ, Kamgoue A, Martin B, Polard P, Campo N, Claverys JP (2013) Midcell recruitment of the DNA uptake and virulence nuclease, EndA, for pneumococcal transformation. PLoS Pathog 9:e1003596

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Junko Sakamoto for electron microscopy. This work was supported by Takeda Science Foundation, Pfizer Academic Contributions, and The Waksman Foundation of Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazuya Morikawa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1591 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen, L.T.T., Takemura, A.J., Ohniwa, R.L. et al. Sodium Polyanethol Sulfonate Modulates Natural Transformation of SigH-Expressing Staphylococcus aureus . Curr Microbiol 75, 499–504 (2018). https://doi.org/10.1007/s00284-017-1409-5

Download citation