Phylogeny and Antagonistic Activities of Culturable Bacteria Associated with the Gut Microbiota of the Sea Urchin (Paracentrotus lividus)

Abstract

In this study, we have investigated the phylogeny and the antagonistic interactions of culturable bacteria isolated from the sea urchin Paracentrotus lividus collected from Aber and Morgat, both located in Crozon peninsula, France. Bacteria were isolated from the gastrointestinal tracts of ten specimens by using conventional culture-dependent method and then investigated by using phylogenetic analysis based on 16S rRNA gene sequence comparisons. Assays for antagonistic interactions among the bacterial strains were performed; bacteria (including at least one strain representative of each OTU identified) were screened for antimicrobial substance production. So, 367 bacterial strains were isolated on marine-agar. On the basis of morphological characteristics, 180 strains were sequenced and 94 OTUs were classified. The dominant phyla were Proteobacteria, Firmicutes and Actinobacteria, with a high abundance of the strains belonging to the genus Psychrobacter. From the antagonistic interactions assays, it could be determined that 22.7% strains were positive for at least one antagonism interaction, 18.3% of them isolated from the sea urchins collected in Morgat. We hypothesize that the bacteria isolated in this study may represent the transitory microbiota of the gastrointestinal tract of P. lividus, and that this microbiota may be related to the diet of this marine invertebrate. Furthermore, our results suggest that chemical antagonism could play a significant role in shaping the bacterial communities within gastrointestinal tract of the sea urchins. In addition, most isolated bacteria may have promising biotechnology applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Andrew N, Agatsuma Y, Ballesteros E, Bazhin A, Creaser E, Barnes D et al (2002) Status and management of world sea urchin fisheries. Oceanogr Mar Biol Annu Rev 40:343–425. https://doi.org/10.1201/9780203180594.ch7

    Google Scholar 

  2. 2.

    Becker PT, Egea E, Eeckhaut I (2008) Characterization of the bacterial communities associated with the bald sea urchin disease of the echinoid Paracentrotus lividus. J Invertebr Pathol 98:136–147. https://doi.org/10.1016/j.jip.2007.12.002

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Becker PT, Gillan DC, Eeckhaut I (2007) Microbiological study of the body wall lesions of the echinoid Tripneustes gratilla. Dis Aquat Organ 77:73–82. https://doi.org/10.3354/dao01821

    Article  PubMed  Google Scholar 

  4. 4.

    Becker PT, Gillan DC, Eeckhaut I (2009) Characterization of the bacterial community associated with body wall lesions of Tripneustes gratilla (Echinoidea) using culture-independent methods. J Invertebr Pathol 100:127–130. https://doi.org/10.1016/j.jip.2008.11.002

    Article  PubMed  Google Scholar 

  5. 5.

    Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA 107:18933–18938. https://doi.org/10.1073/pnas.1007028107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Boudouresque C, Verlaque M (2001) Ecology of Paracentrotus lividus. Dev Aquac Fish Sci 32:177–216. https://doi.org/10.1016/S0167-9309(01)80013-2

    Article  Google Scholar 

  7. 7.

    Boudouresque C, Verlaque M (2013) Ecology of Paracentrotus lividus developments in aquaculture and fisheries science. In: LawrenceJM (ed) Sea urchins: biology and ecology. Elsevier, Oxford, pp 297–327

    Google Scholar 

  8. 8.

    Bowman JP, Cavanagh J, Austin JJ, Sanderson K (1996) Novel Psychrobacter species from Antarctic ornithogenic soils. Int J Syst Bacteriol 46:841–848

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Bowman JP (2006) The genus Psychrobacter. Prokaryotes 6:920–930. https://doi.org/10.1007/0-387-30746-x_35 (CHAPTER 3.3.35)

    Google Scholar 

  10. 10.

    Bull AT, Stach JE, Ward AC, Goodfellow M (2005) Marine actinobacteria: perspectives, challenges, future directions. Antonie Van Leeuwenhoek 87:65–79

    Article  Google Scholar 

  11. 11.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-through put community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Catarino AI, Bauwens M, Dubois P (2012) Acid–base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures Environ. Sci Pollut Res 19:2344–2353

    CAS  Article  Google Scholar 

  13. 13.

    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696. https://doi.org/10.1073/pnas.1005963107

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    De Ridder C, Foret TW (2001) Non-parasitic symbioses between echinoderms and bacteria. In: Jangoux M, Lawrence JM (eds) Echinoderm studies. AA Balkema, Rotterdam, pp 111–169

    Google Scholar 

  15. 15.

    Flemer B, Kennedy J, Margassery LM, Morrissey JP, O’Gara F, Dobson AD (2011) Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberitescarnosus and Leucosolenia sp. J Appl Microbiol 112:289–301. https://doi.org/10.1111/j.1365-2672.2011.05211.x

    Article  PubMed  Google Scholar 

  16. 16.

    Gong AN, Li HP, Shen L, Zhang JB, Wu AB, He WJ et al (2015) The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins. Front Microbiol 6:1091. https://doi.org/10.3389/fmicb.2015.01091

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kanagasabhapathy M, Sasaki H, Nagata S (2008) Phylogenetic identification of epibiotic bacteria possessing antimicrobial activities isolated from red algal species of Japan. World J Microbiol Biotechnol 24:2315–2321. https://doi.org/10.1007/s11274-008-9746-y

    CAS  Article  Google Scholar 

  20. 20.

    Laport MS, Santos-Gandelman JF, Muricy G, Giambiade-deMarval M, George I (2016) Antagonistic interactions among bacteria isolated from either the same or from different sponges native to the Brazilian coast. J Marine Sci Res Dev 6:185. https://doi.org/10.4172/2155-9910.1000185

    Article  Google Scholar 

  21. 21.

    Laport MS, Bauwens M, Nunes SO, Willenz P, George I, Muricy G (2017) Culturable bacterial communities associated to Brazilian Oscarella species (Porifera: Homoscleromorpha) and their antagonistic interactions. Antonie Van Leeuwenhoek 110:489–499. https://doi.org/10.1007/s10482-016-0818-y

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Lawrence J, Lawrence A, Watts S (2013) Feeding, digestion, and digestibility of sea urchins. In: Lawrence JM (ed) Sea urchins: biology and ecology. Elsevier, Oxford, pp 135–154

    Google Scholar 

  23. 23.

    Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lupp C, Finlay BB (2005) Intestinal microbiota. Curr Biol 15:R235–R236. https://doi.org/10.1016/j.cub.2015.06.031

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Marinho PR, Moreira AP, Pellegrino FL, Muricy G, Bastos MC, Santos KR et al (2009) Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria. MIOC 104:678–682

    Google Scholar 

  26. 26.

    Martín-Rodríguez AJ, González-Orive A, Hernández-Creus A, Morales A, Dorta-Guerra R, Norte M et al (2014) On the influence of the culture conditions in bacterial antifouling bioassays and biofilm properties: Shewanella algae, a case study. BMC Microbiol 14:102. https://doi.org/10.1186/1471-2180-14-102

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Mayer LM, Jumars PA, Bock MJ, Vetter YA, Schmidt JL (2001) Two roads to sparagmos: extracellular digestion of sedimentary food by bacterial inoculation versus deposit feeding. In: Aller JY, Woodin SA, Aller RC (eds) Organism-sediment interactions. University of South Carolina, Columbia, pp 335–347

    Google Scholar 

  28. 28.

    McClay DR (2011) Evolutionary cross roads in developmental biology: sea urchins. Development 138:2639–2648. https://doi.org/10.1242/dev.048967

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Meziti AK, Kormas AR, Pancucci-Papadopoulou M-A, Thessalou-Legaki M (2007) Bacterial phylotypes associated with the digestive tract of the sea urchin Paracentrotus lividus and the ascidian Microcosmus sp. Russ J Mar Biol 33:84–91

    Article  Google Scholar 

  30. 30.

    Muraoka DD (1990) Managing the sea urchin fishery: an economic perspective. Nat Resour J 30:139

    Google Scholar 

  31. 31.

    Nelson L, Blair B, Murdock C, Meade M, Watts S, Lawrence AL (2010) Molecular Analysis of gut microflora in captive-raised sea urchins (Lytechinus variegatus). J World Aquac Soc 41:807–815

    Article  Google Scholar 

  32. 32.

    Olson JB, Kellogg CA (2010) Microbial ecology of corals, sponges, and algae in mesophotic coral environments. FEMS Microbiol Ecol 73:17–30

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Pinsino A, Matranga V, Trinchella F, Roccheri MC (2010) Sea urchin embryos as an in vivo model for the assessment of manganese toxicity: developmental and stress response effects. Ecotoxicology 19:555–562

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Quillien N, Nordström MC, Le Bris H, Bonsdorff E, Grall J (2017) Green tides on inter- and subtidal sandy shores: differential impacts on infauna and flatfish. J Mar Biol Assoc UK. https://doi.org/10.1017/S0025315416002010

    Google Scholar 

  35. 35.

    Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinform 12:38. https://doi.org/10.1186/1471-2105-12-38

    Article  Google Scholar 

  36. 36.

    Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Rua CP, Trindade-Silva AE, Appolinario LR, Venas TM, Garcia GD, Carvalho LS et al (2014) Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis. Peer J 2:e419. https://doi.org/10.7717/peerj.419

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Ruppert EE, Barnes RD (1997) Invertebrate zoology, 6th edn. Saunders College Publishing, Orlando

    Google Scholar 

  39. 39.

    Santos-Gandelman JF, Giambiagi-deMarval M, Oelemann WMR, Laport MS (2014) Biotechnological potential of sponge-associated bacteria. Curr Pharm Biotechnol 15:143–155

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Sauchyn LK, Lauzon-Guay J-S, Scheibling RE (2011) Sea urchin fecal production and accumulation in a rocky subtidal ecosystem. Aquat Biol 13:215–223. https://doi.org/10.3354/ab00359

    Article  Google Scholar 

  41. 41.

    Sauchyn LK, Scheibling RE (2009) Degradation of sea urchin feces in a rocky subtidal ecosystem: implications for nutrient cycling and energy flow. Aquat Biol 6:99–108. https://doi.org/10.3354/ab00171

    Article  Google Scholar 

  42. 42.

    Sauchyn LK, Scheibling RE (2009) Fecal production by sea urchins in native and invaded algal beds. Mar Ecol Prog Ser 396:35–48. https://doi.org/10.3354/meps08296

    CAS  Article  Google Scholar 

  43. 43.

    Sommer F, Backhed F (2013) The gut microbiota: masters of host development and physiology. Nat Rev Microbiol 11:227–238

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1131

    Article  PubMed  Google Scholar 

  45. 45.

    Ventura M, Turroni F, Canchaya C, Vaughan EE, O’Toole PW, Sinderen D (2009) Microbial diversity in the human intestine and novel insights from metagenomics. Front Biosci 14:3214–3863

    CAS  Article  Google Scholar 

  46. 46.

    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA et al (2011) Linking long term dietary patterns with gut microbial enterotypes. Science 334:105–108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Council for Scientific and Technological Development (CNPq), the National Council for the Improvement of Higher Education (CAPES), the Carlos Chagas Filho Foundation for Research Support of Rio de Janeiro State (FAPERJ) to Laport, MS and by a “Crédit de Recherches” grant from the Fonds de la Recherche Scientifique (FRS-FNRS) to George, I. We are also grateful to Science Without Borders, a CNPq Program for the post doctorate scholarship to Laport, MS; and to Prof. Philippe Dubois and Prof. Chantal de Ridder for accepting her in the “Laboratoire de Biologie Marine”, at “Université Libre de Bruxelles”, Belgium.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marinella Silva Laport.

Ethics declarations

Conflict of interest

No conflict of interest is declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1—Culturable bacteria associated with the gut microbiota of the sea urchin (Paracentrotus lividus): Distribution, 16S rRNA gene sequence affiliation, accession numbers of the sequence data deposited in the GenBank database, abundance and taxonomic assignment of bacterial OTUs (XLSX 30 KB)

Supplementary material 2—Distribution, abundance and taxonomic assignment of bacterial OTUs with just one sequence, Distribution, abundance and taxonomic assignment of bacterial OTUs with two or more sequences (XLSX 44 KB)

Supplementary material 3—Antagonistic interactions among bacteria isolated from the gastrointestinal tract (stomach and intestine) of the sea urchins collected in Aber (XLSX 10 KB)

Supplementary material 4—Antagonistic interactions among bacteria isolated from the gastrointestinal tract (stomach and intestine) of the sea urchins collected in Morgat (XLSX 13 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laport, M.S., Bauwens, M., Collard, M. et al. Phylogeny and Antagonistic Activities of Culturable Bacteria Associated with the Gut Microbiota of the Sea Urchin (Paracentrotus lividus). Curr Microbiol 75, 359–367 (2018). https://doi.org/10.1007/s00284-017-1389-5

Download citation

Keywords

  • Antimicrobials
  • Biotechnology
  • Culture-dependent approach
  • Gut microbiome
  • Paracentrotus lividus
  • Psychrobacter