Current Microbiology

, Volume 75, Issue 3, pp 353–358 | Cite as

Streptomyces lasii sp. nov., a Novel Actinomycete with Antifungal Activity Isolated from the Head of an Ant (Lasius flavus)

  • Chongxi Liu
  • Chuanyu Han
  • Shanwen Jiang
  • Xueli Zhao
  • Yuanyuan Tian
  • Kai Yan
  • Xiangjing Wang
  • Wensheng Xiang
Article

Abstract

During a screening for novel and biotechnologically useful actinobacteria in insects, a novel actinobacteria with antifungal activity, designated strain 5H-CA11T, was isolated from the head of an ant (Lasius flavus) and characterized using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence analysis showed that strain 5H-CA11T is a member of the genus Streptomyces, with the highest sequence similarity to Streptomyces scabrisporus DSM 41855T (98.9%). Similarities to other type strains of the genus Streptomyces were lower than 96%. Phylogenetic analysis based on the 16S rRNA gene sequence also indicated that strain 5H-CA11T clusters with S. scabrisporus DSM 41855T using two tree-making algorithms. DNA–DNA hybridization between strain 5H-CA11T and S. scabrisporus JCM 11712T revealed 33.6% similarity, supporting the phenotypic and phylogenetic differences found between these two strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces lasii sp. nov. is proposed. The type strain is 5H-CA11T (=CGMCC 4.7303T = DSM 102043T).

Notes

Acknowledgements

This work was supported in part by the National Outstanding Youth Foundation grant 31225024 awarded to W.S.X, the National Key Technology R&D Program 2012BAD19B06 (to W.S.X), the National Natural Science Foundation of China (No. 31471832 and 31672092 to W.S.X, 31500010 to C.X.L, 31572070 and 31372006 to X.J.W), Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (CSCP to X.J.W) and the “Young Talents” Project of Northeast Agricultural University (14QC02 to C.X.L). We are grateful to Prof. Aharon Oren for helpful advice on the specific epithet.

Supplementary material

284_2017_1388_MOESM1_ESM.docx (7.3 mb)
Supplementary material 1 (DOCX 7468 KB)

References

  1. 1.
    Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinobacteria. J Bacteriol 46:337–34130PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kämpfer P (2012) Genus I. Streptomyces. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-i, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, the Actinobacteria, vol 5, 2nd edn. Springer, New York, pp 1455–1767Google Scholar
  3. 3.
    Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26CrossRefPubMedGoogle Scholar
  4. 4.
    Hong K, Gao AH, Xie QY et al (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7:24–44CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hulcr J, Adams AS, Raffa K et al (2011) Presence and diversity of Streptomyces in Dendroctonus and sympatric bark beetle galleries across north America. Microb Ecol 61:759–768CrossRefPubMedGoogle Scholar
  6. 6.
    Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  7. 7.
    Waksman SA (1961) The Actinomycetes, vol 2, Classification, identification and descriptions of genera and species. Williams and Wilkins, BaltimoreGoogle Scholar
  8. 8.
    Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors. US Government Printing Office, Washington, DCGoogle Scholar
  10. 10.
    Xu P, Li WJ, Tang SK et al (2005) Naxibacteral kalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153CrossRefPubMedGoogle Scholar
  11. 11.
    Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654Google Scholar
  12. 12.
    Gordon RE, Barnett DA, Handerhan JE et al (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  13. 13.
    Yokota A, Tamura T, Hasegawa T (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812CrossRefGoogle Scholar
  14. 14.
    Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  15. 15.
    Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinobacterias. In: Dietz A, Thayer DW (eds) Actinobacteria taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291Google Scholar
  16. 16.
    McKerrow J, Vagg S, McKinney T et al (2000) Simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182CrossRefPubMedGoogle Scholar
  17. 17.
    Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–284Google Scholar
  18. 18.
    Wu C, Lu X, Qin M et al (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 16:176–17817Google Scholar
  19. 19.
    Gao RX, Liu CX, Zhao JW et al (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315CrossRefPubMedGoogle Scholar
  20. 20.
    Xiang WS, Liu CX, Wang XJ et al (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169CrossRefPubMedGoogle Scholar
  21. 21.
    Kim SB, Brown R, Oldfield et al (2000)) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinobacteria. Int J Syst Evol Microbiol 50:2031–2036CrossRefPubMedGoogle Scholar
  22. 22.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  23. 23.
    Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  24. 24.
    Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  26. 26.
    Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. 27.
    Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  28. 28.
    Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  29. 29.
    Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206CrossRefGoogle Scholar
  30. 30.
    De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefPubMedGoogle Scholar
  31. 31.
    Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192CrossRefPubMedGoogle Scholar
  32. 32.
    Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100CrossRefPubMedGoogle Scholar
  33. 33.
    Wayne LG, Brenner DJ, Colwell RR (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  34. 34.
    Xu P, Takahashi Y, Seino A et al (2004) Streptomyces scabrisporus sp. nov. Int J Syst Evol Microbiol 54:577–581CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Chongxi Liu
    • 1
  • Chuanyu Han
    • 1
  • Shanwen Jiang
    • 1
  • Xueli Zhao
    • 1
  • Yuanyuan Tian
    • 1
  • Kai Yan
    • 1
  • Xiangjing Wang
    • 1
  • Wensheng Xiang
    • 1
    • 2
  1. 1.Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations