Current Microbiology

, Volume 75, Issue 3, pp 343–352 | Cite as

Endophytic Paraconiothyrium sp. from Zingiber officinale Rosc. Displays Broad-Spectrum Antimicrobial Activity by Production of Danthron

  • C. Anisha
  • P. Sachidanandan
  • E. K. Radhakrishnan


The bioactivity spectrum of fungal endophytes isolated from Zingiber officinale was analyzed against clinical pathogens and against the phytopathogen Pythium myriotylum, which causes Pythium rot in ginger. One of the isolates GFM13 showed broad bioactivity against various pathogens tested including P. myriotylum. The spore suspension as well as the culture filtrate of the endophytic fungal isolate was found to effectively protect ginger rhizomes from Pythium rot. By molecular identification, the fungal endophyte was identified as Paraconiothyrium sp. The bioactive compound produced by the isolate was separated by bioactivity-guided fractionation and was identified by GC–MS as danthron, an anthraquinone derivative. PCR amplification showed the presence of non-reducing polyketide synthase gene (NR-PKS) in the endophyte GFM13, which is reported to be responsible for the synthesis of anthraquinones in fungi. This is the first report of danthron being produced as the biologically active component of Paraconiothyrium sp. Danthron is reported to have wide pharmaceutical and agronomic applications which include its use as a fungicide in agriculture. The broad-spectrum antimicrobial activity of danthron and the endophytic origin of Paraconiothyrium sp. offer immense applications of the study.



We are thankful to KSCSTE for providing facilities under KSCSTE-SARD Programme. We are also grateful to DBT, Govt of India, for providing instrumentation facility under DBT-MSUB and DBT-RGYI support scheme. The ginger samples were provided by Kerala Agricultural University, Thrissur, Kerala. The authors also thank the Department of Applied Chemistry, CUSAT, for GC–MS analysis.


This work was supported by DST, Government of India, under DST-PURSE program (Order No.: SR/S9/Z-23/2010/22).

Compliance with Ethical Standards

Conflict of interest

There are no conflicts of interest.


  1. 1.
    Agarwal M, Walia S, Dhingra S, Khambay BPS (2001) Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinale Roscoe (ginger) rhizomes. Pest Manag Sci 57:289–300. CrossRefPubMedGoogle Scholar
  2. 2.
    Awad NE, Kassem HA, Hamed MA, El-Naggar MAA, El-Feky AMM (2014) Bioassays guided isolation of compounds from Chaetomium globosum. J Mycol Med 24:e35–e42. CrossRefPubMedGoogle Scholar
  3. 3.
    Bingle LE, Simpson TJ, Lazarus CM (1999) Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet Biol 26:209–223. CrossRefPubMedGoogle Scholar
  4. 4.
    Budhiraja A, Nepali K, Sapra S, Gupta S, Kumar S, Dhar KL (2013) Bioactive metabolites from an endophytic fungus of Aspergillus species isolated from seeds of Gloriosa superba Linn. Med Chem Res 22:323–329. CrossRefGoogle Scholar
  5. 5.
    Chapla VM, Zeraik ML, Ximenes VF, Zanardi LM, Lopes MN, Cavalheiro AJ, Silva DH, Young MC, Fonseca LM, Bolzani VS, Araujo AR (2014) Bioactive secondary metabolites from Phomopsis sp., an endophytic fungus from Senna spectabilis. Molecules 19:6597–6608. CrossRefPubMedGoogle Scholar
  6. 6.
    Combès A, Ndoye I, Bance C, Bruzaud J, Djediat C, Dupont J, Nay B, Prado S (2012) Chemical communication between the endophytic fungus Paraconiothyrium Variabile and the phytopathogen Fusarium oxysporum. PLoS ONE 7:e47313. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cox RJ, Simpson TJ (2009) Fungal type I polyketide synthases. Methods Enzymol 459:49–78. CrossRefPubMedGoogle Scholar
  8. 8.
    Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:85–99. CrossRefGoogle Scholar
  9. 9.
    Godard S, Slacanin I, Viret O, Gindro K (2009) Induction of defence mechanisms in grapevine leaves by emodin- and anthraquinone-rich plant extracts and their conferred resistance to downy mildew. Plant Physiol Bioch 47:827–837. CrossRefGoogle Scholar
  10. 10.
    Guo Z, Ren F, Che Y, Liu G, Liu L (2015) New bergamotane sesquiterpenoids from the plant endophytic fungus Paraconiothyrium brasiliense. Molecules 20:14611–14620. CrossRefPubMedGoogle Scholar
  11. 11.
    Han M, Liu T, Cai X, Chen K, Liu C, Brian K, Xue Y, Gu Y (2012) A new endophytic Paraconiothyrium brasiliens LT161 shows potential in producing antifungal metabolites against phytopathogens. African J Microbiol Res 6:7572–7578CrossRefGoogle Scholar
  12. 12.
    Jolad SD, Lantz RC, Chen GJ, Bates RB, Timmermann BN (2005) Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production. Phytochemistry 66:1614–1635. CrossRefPubMedGoogle Scholar
  13. 13.
    Karuppiah P, Rajaram S (2012) Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens. Asian Pac J Trop Biomed 2:597–601. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Khan AL, Hamayun M, Hussain J, Kang S-M, Lee I-J (2012) The newly isolated endophytic fungus Paraconiothyrium sp. LK1 produces ascotoxin. Molecules 17:1103–1112. CrossRefPubMedGoogle Scholar
  15. 15.
    Kim EC, Min JK, Kim TY, Lee SJ, Yang HO, Han S, Kim YM, Kwon YG (2005) [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochem Biophys Res Commun 335:300–308. CrossRefPubMedGoogle Scholar
  16. 16.
    Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PloS ONE 8:e56202. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kunze A, Witteb L, Aregullinc M, Rodriguez E, Proksch P (1996) Anthraquinones in the Leaf Beetle Trirhabda geminata (Chrysomelidae). Z Naturforsch. 51c: 249–252. Google Scholar
  18. 18.
    Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798. CrossRefPubMedGoogle Scholar
  19. 19.
    Liu K, Ding X, Deng B, Chen W (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 36:1171–1177. CrossRefPubMedGoogle Scholar
  20. 20.
    Lu HF, Wang HL, Chuang YY, Tang YJ, Yang JS, Ma YS, Chiang JH, Lu CC, Yang JL, Lai TY, Wu CC, Chung JG (2009) Danthron induced apoptosis through mitochondria- and caspase-3-dependent pathways in human brain Glioblastoma multiforms GBM 8401 cells. Neurochem Res 35:390–398. CrossRefPubMedGoogle Scholar
  21. 21.
    Ma X, Gang DR (2006) Metabolic profiling of in vitro micropropagated and conventionally greenhouse grown ginger (Zingiber officinale). Phytochemistry 67:2239–2255. CrossRefPubMedGoogle Scholar
  22. 22.
    Rabha AJ, Naglot A, Sharma GD, Gogoi HK, Veer V (2014) In vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian J Microbiol 54:302–309. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Radhakrishnan EK, Bava SV, Narayanan SS, Nath LR, Thulasidasan AK, Soniya EV, Anto RJ (2014) [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling. PloS ONE 9:e104401. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schroeckh V, Scherlach K, Nutzmann HW, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci 106:14558–14563. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450. CrossRefGoogle Scholar
  26. 26.
    Shiono Y, Kikuchi M, Koseki T, Murayama T, Kwon E, Aburai N, Kimura K (2011) Isopimarane diterpene glycosides, isolated from endophytic fungus Paraconiothyrium sp. MY-42 Phytochemistry 72:1400–1405. CrossRefPubMedGoogle Scholar
  27. 27.
    Soliman Sameh SM, Greenwood John S, Bombarely A, Mueller Lukas A, Tsao R, Mosser Dick D, Raizada Manish N (2015) An endophyte constructs fungicide-containing extracellular barriers for its host plant. Curr Biol 25:2570–2576. CrossRefPubMedGoogle Scholar
  28. 28.
    Somjaipeng S, Medina A, Kwaśna H, Ordaz Ortiz J, Magan N (2015) Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium variabile from English yew trees (Taxus baccata). Fungal Biol 119:1022–1031. CrossRefPubMedGoogle Scholar
  29. 29.
    Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol 67:491–502. CrossRefGoogle Scholar
  30. 30.
    Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544. CrossRefPubMedGoogle Scholar
  31. 31.
    Strobel GA, Torczynski R, Bollon A (1997) Acremonium sp.—a leucinostatin A producing endophyte of European yew (Taxus baccata). Plant Sci 128:97–108. CrossRefGoogle Scholar
  32. 32.
    Tian Y, Amand S, Buisson D, Kunz C, Hachette F, Dupont J, Nay B, Prado S (2014) The fungal leaf endophyte Paraconiothyrium variabile specifically metabolizes the host-plant metabolome for its own benefit. Phytochemistry 108:95–101. CrossRefPubMedGoogle Scholar
  33. 33.
    Voigt K, Cigelnik E, O’Donnell K (1999) Phylogeny and PCR identification of clinically important Zygomycetes based on nuclear ribosomal-DNA sequence data. J Clin Microbiol 37:3957–3964PubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang J, Wang G, Zhang Y, Zheng B, Zhang C, Wang L (2014) Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites. World J Microbiol Biotechnol 30:2639–2644. CrossRefPubMedGoogle Scholar
  35. 35.
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  36. 36.
    Wu L-S, Hu C-L, Han T, Zheng C-J, Ma X-Q, Rahman K, Qin L-P (2012) Cytotoxic metabolites from Perenniporia tephropora, an endophytic fungus from Taxus chinensis var. mairei. Appl Microbiol Biotechnol 97:305–315. CrossRefPubMedGoogle Scholar
  37. 37.
    Yamazaki H, Rotinsulu H, Kaneko T, Murakami K, Fujiwara H, Ukai K, Namikoshi M (2012) A new dibenz[b,e]oxepine derivative, 1-hydroxy-10-methoxy-dibenz[b,e]oxepin-6,11-dione, from a marine-derived fungus, Beauveria bassiana TPU942. Mar Drugs 10:2691–2697CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yuan Y, Tian JM, Xiao J, Shao Q, Gao JM (2014) Bioactive metabolites isolated from Penicillium sp. YY-20, the endophytic fungus from Ginkgo biloba. Nat Prod Res 28:278–281. CrossRefPubMedGoogle Scholar
  39. 39.
    Zeng W, Wang D, Kirk W, Hao J (2012) Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biol Control 60:225–232. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • C. Anisha
    • 1
  • P. Sachidanandan
    • 2
  • E. K. Radhakrishnan
    • 1
  1. 1.School of BiosciencesMahatma Gandhi UniversityKottayamIndia
  2. 2.Regional Forensic LaboratoryKannurIndia

Personalised recommendations