Advertisement

Current Microbiology

, Volume 75, Issue 3, pp 305–308 | Cite as

The Draft Genome Sequence of Clostridium beijerinckii NJP7, a Unique Bacterium Capable of Producing Isopropanol–Butanol from Hemicellulose Through Consolidated Bioprocessing

  • Yujia Jiang
  • Tianpeng Chen
  • Weiliang Dong
  • Min Zhang
  • Wenming Zhang
  • Hao Wu
  • Jiangfeng Ma
  • Min Jiang
  • Fengxue Xin
Article

Abstract

A wild type solventogenic Clostridium beijerinckii NJP7 capable of converting polysaccharides, such as hemicellulose, into butanol and isopropanol via a unique acetone–isopropanol–butanol (AIB) pathway was isolated and characterized. This represents the first wild type isopropanol–butanol generating bacterium which could achieve butanol production directly from lignocellulose through consolidated bioprocessing (CBP). Strain NJP7 was isolated from decomposite soil from Laoshan Nature Park, China, and its genome shows 98.6% identical to 89.5% of the Clostridium diolis submitted genome sequence. The assembled draft genome contains 5.76 Mb and 5101 predicted encoding proteins with a GC content of 29.73%. Among these annotated proteins, hemicellulase and the secondary alcohol dehydrogenase play key roles in achievement of AIB production from hemicellulose through CBP.

Notes

Acknowledgements

This work was supported by Jiangsu Province Natural Science Foundation for Youths (No. BK20170993), the National Natural Science Foundation of China (21706125, 21727818, 21706124, 31700092), and the Project of State Key Laboratory of Materials-Oriented Chemical Engineering (KL16-08).

Compliance with Ethical Standards

Conflict of interest

The authors declared that they have no conflict of interest.

References

  1. 1.
    Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3):326–338CrossRefPubMedGoogle Scholar
  2. 2.
    Gu Y, Jiang Y, Wu H, Liu XD, Li ZL, Li J, Xiao H, Shen ZB, Dong HJ, Yang YL, Li Y, Jiang WH, Yang S (2011) Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer. Biotechnol J 6(11):1348–1357CrossRefPubMedGoogle Scholar
  3. 3.
    Khan AL, Asaf S, Khan AR, Al-Harrasi A, Al-Rawahi A, Lee IJ (2016) First draft genome sequencing of indole acetic acid producing and plant growth promoting fungus Preussia sp. BSL10. J Biotechnol 225:44–45CrossRefPubMedGoogle Scholar
  4. 4.
    Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Biotechnol 185(24):7120–7128Google Scholar
  5. 5.
    Land ML, Locascio PF, Chen GL, Doug H, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11(1):119CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lee J, Jang YS, Choi SJ, Im JA, Song H, Cho JH, Seung DY, Papoutsakis ET, Bennett GN, Lee SY (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl Environ Microbiol 78(5):1416–1423CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101(2):209–228CrossRefPubMedGoogle Scholar
  8. 8.
    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1):10–12.CrossRefGoogle Scholar
  9. 9.
    Ng ZR, Takahashi K, Liu Z (2013) Isolation, characterization and evaluation of hyper 2-propanol producing bacteria from Singapore environment. World J Microbiol Biotechnol 29(6):1059–1065CrossRefPubMedGoogle Scholar
  10. 10.
    Qureshi N, Blaschek HP (2011) ABE production from corn: a recent economic evaluation. J Ind Microbiol Biotechnol 27(5):292–297CrossRefGoogle Scholar
  11. 11.
    Wang Y, Tao F, Tang HZ, Xu P (2013) Genome sequence of Clostridium diolis strain DSM 15410, a promising natural producer of 1,3-propanediol. Genome Announc 1(4):e00542-13PubMedPubMedCentralGoogle Scholar
  12. 12.
    Xin FX, He JZ (2013) Characterization of a thermostable xylanase from a newly isolated Kluyvera species and its application for biobutanol production. Bioresour Technol 135(2):309–315CrossRefPubMedGoogle Scholar
  13. 13.
    Xin FX, Wu YR, He JZ (2014) Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol 80(15):4771–4778CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xin FX, Chen TP, Jiang YJ, Dong WL, Zhang WM, Zhang M, Wu H, Ma JF, Jiang M (2017) Strategies for improved isopropanol–butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing. Biotechnol Biofuels 10(1):118CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome Res 18(5):821–829CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Yujia Jiang
    • 1
  • Tianpeng Chen
    • 1
  • Weiliang Dong
    • 1
  • Min Zhang
    • 1
  • Wenming Zhang
    • 1
    • 2
  • Hao Wu
    • 1
    • 2
  • Jiangfeng Ma
    • 1
  • Min Jiang
    • 1
    • 2
  • Fengxue Xin
    • 1
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations