Current Microbiology

, Volume 75, Issue 3, pp 288–295 | Cite as

1-Day or 5-Day Fecal Samples, Which One is More Beneficial to be Used for DNA-Based Gut Microbiota Study



Fecal sample collection is an important influential factor for DNA-based gut microbiota study. It is controversial whether the microbiome detected in fecal sample collected at one random day could fully represent the gut microbial community. The aim of the study is to figure out whether the use of fecal sample mixture collected at consecutive 5 days could more accurately represent gut microbial community. 1- and 5-day fecal samples were collected from 8 healthy adults and analyzed by 16S rRNA sequence. Our results indicated that both 1-day fecal samples and 5-day samples exhibited relatively high repeatability. The relative abundance of majority of bacterial taxa did not changed between 1-day fecal samples and 5-day fecal samples. However, the alpha diversity of 5-day fecal samples was higher than that of 1-day fecal samples. When the aims of studies are to analyze the relative abundance of specific OTUs among subjects, fecal samples collected at one day could be used. When microbial diversity is one of essential factors to be analyzed, the use of 5-day fecal samples may be more recommended.



This work was supported by the National Natural Science Foundation of China (81472214), Zhejiang province key science and technology innovation team (2013TD13).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

284_2017_1378_MOESM1_ESM.docx (4.7 mb)
Supplementary material 1 (DOCX 4792 KB)


  1. 1.
    Ahn J, Sinha R, Pei Z et al (2013) Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 105(24):1907–1911. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Amato KR, Yeoman CJ, Kent A et al (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7(7):1344–1353. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carroll IM, Ringel-Kulka T, Keku TO et al (2011) Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 301(5):G799-807. CrossRefPubMedGoogle Scholar
  5. 5.
    Chu H, Khosravi A, Kusumawardhani IP et al (2016) Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352(6289):1116–1120. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Clarke SF, Murphy EF, O’Sullivan O et al (2014) Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63(12):1913–1920. CrossRefPubMedGoogle Scholar
  7. 7.
    David LA, Materna AC, Friedman J et al (2014) Host lifestyle affects human microbiota on daily timescales. Genome Biol 15(7):R89. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. CrossRefPubMedGoogle Scholar
  9. 9.
    Durban A, Abellan JJ, Jimenez-Hernandez N et al (2012) Daily follow-up of bacterial communities in the human gut reveals stable composition and host-specific patterns of interaction. FEMS Microbiol Ecol 81(2):427–437. CrossRefPubMedGoogle Scholar
  10. 10.
    Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Faith JJ, Guruge JL, Charbonneau M et al (2013) The long-term stability of the human gut microbiota. Science 341(6141):1237439. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Falony G, Joossens M, Vieira-Silva S et al (2016) Population-level analysis of gut microbiome variation. Science 352(6285):560–564. CrossRefPubMedGoogle Scholar
  13. 13.
    Flores R, Shi J, Fuhrman B et al (2012) Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med 10:253. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Forslund K, Hildebrand F, Nielsen T et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gorvitovskaia A, Holmes SP, Huse SM (2016) Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 4:15. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Halmos EP, Christophersen CT, Bird AR et al (2015) Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64(1):93–100. CrossRefPubMedGoogle Scholar
  17. 17.
    Hill CJ, Brown JR, Lynch DB et al (2016) Effect of room temperature transport vials on DNA quality and phylogenetic composition of faecal microbiota of elderly adults and infants. Microbiome 4(1):19. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jalanka-Tuovinen J, Salonen A, Nikkila J et al (2011) Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One 6(7):e23035. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kennedy NA, Walker AW, Berry SH et al (2014) The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS ONE 9(2):e88982. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Koren O, Knights D, Gonzalez A et al (2013) A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol 9(1):e1002863. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546. CrossRefPubMedGoogle Scholar
  22. 22.
    Man SM, Zhu Q, Zhu L et al (2015) Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162(1):45–58. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Noor SO, Ridgway K, Scovell L et al (2010) Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. BMC Gastroenterol 10:134. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rajilic-Stojanovic M, Heilig HG, Tims S et al (2012) Long-term monitoring of the human intestinal microbiota composition. Environ Microbiol. PubMedGoogle Scholar
  25. 25.
    Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214. CrossRefPubMedGoogle Scholar
  26. 26.
    Scanlan PD, Shanahan F, O’Mahony C et al (2006) Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol 44(11):3980–3988. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shaw AG, Sim K, Powell E et al. (2016) Latitude in sample handling and storage for infant faecal microbiota studies: the elephant in the room? Microbiome 4(1):40. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sonnenburg ED, Sonnenburg JL (2014) Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 20(5):779–786. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vandeputte D, Falony G, Vieira-Silva S et al (2016) Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65(1):57–62. CrossRefPubMedGoogle Scholar
  30. 30.
    Vanhoutte T, Huys G, Brandt E et al (2004) Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 48(3):437–446. CrossRefPubMedGoogle Scholar
  31. 31.
    Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zoetendal EG, Rajilic-Stojanovic M, de Vos WM (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57(11):1605–1615. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tingting Su
    • 1
    • 2
  • Rongbei Liu
    • 1
    • 2
  • Yanqin Long
    • 1
  • Sheng Quan
    • 2
  • Sanchuan Lai
    • 1
    • 2
  • Lan Wang
    • 1
    • 2
  • Jianmin Si
    • 1
    • 2
  • Shujie Chen
    • 1
    • 2
  1. 1.Department of Gastroenterology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.Institute of GastroenterologyZhejiang UniversityHangzhouChina

Personalised recommendations