Current Microbiology

, Volume 75, Issue 3, pp 278–283 | Cite as

Vibrio hannami sp. nov., Isolated from Seawater

  • Ga-Eun Lee
  • Wan-Taek Im
  • Jin-Sook Park


A Gram-reaction negative, aerobic, motile, non-pigmented and rod-shaped bacterium, designated as 168GH5-2-16T, was isolated from seawater Jeju island. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that the strain formed a distinct lineage within the genus Vibrio and was most closely related to Vibrio variabilis R-40492T (96.0%). The DNA G+C content was 49.3 mol%. The major polar lipids were phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). The predominant quinone was ubiquinone-8 (Q-8). The major fatty acids were C16:0, summed feature 3 (comprising C16:1 ω7c/C16:1 ω6c) and summed feature 8 (C18:1 ω7c/C18:1 ω6c) supported the affiliation of 168GH5-2-16T to the genus Vibrio. Moreover, the physiological, biochemical, and taxonomic analysis allowed the phenotypic and genotypic differentiation of strain 168GH5-2-16T from the recognized species of the genus Vibrio. Therefore, strain 168GH5-2-16T represents a novel species of the genus Vibrio, for which the name Vibrio hannami sp. nov. is proposed, with the type strain 168GH5-2-16T (=KACC 19277T = DSM105032T).


Vibrio hannami 16S rRNA gene sequence Polyphasic taxomony 



This research was supported by a grant from the Marine Biotechnology Program (20170431) funded by the Ministry of Oceans and Fisheries, Korea, and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A3B03933067), Korea.

Supplementary material

284_2017_1376_MOESM1_ESM.pptx (561 kb)
Fig. S1. Transmission electron micrograph of strain 168GH5-2-16T. Bar, 1 μm. (PPTX 560 KB)
284_2017_1376_MOESM2_ESM.pptx (1.2 mb)
Fig. S2. Two-dimensional TLC of the total polar lipids of strain 168GH5-2-16T. The TLC plate was stained for total polar lipids with 5 % ethanolic molybdophosphoric acid. Abbreviations: PE, Phosphatidylethanolamine; PG, phosphatidylglycerol; PL, unknown phospholipid; APL, unknown aminophospholipids; ALs, unknown aminolipids and Ls, unknown polar lipids. (PPTX 1202 KB)
284_2017_1376_MOESM3_ESM.docx (34 kb)
Supplementary material 3 (DOCX 34 KB)


  1. 1.
    Al-Saari N, Gao F, Rohul AA, Sato K, Sato K, Sato K, Mino S, Suda W, Oshima K, Hattori M, Ohkuma M et al (2015) Advanced microbial taxonomy combined with genome-based-approaches reveals that Vibrio astriarenae sp. nov., an Agarolytic Marine Bacterium, Forms a New Clade in Vibrionaceae. PLoS ONE 10(8):e0136279CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Baumann P, Furniss AL, Lee JV (1984) Genus I. Vibrio Pacini 1854. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 518–538Google Scholar
  3. 3.
    Buck JD (1982) Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993PubMedPubMedCentralGoogle Scholar
  4. 4.
    Chimetto LA, Cleenwerck I, Moreira APB, Brocchi M, Willems A, De Vos P (2001) Thompson FL Vibrio variabilis sp. nov. and Vibrio maritimus sp. nov., isolated from Palythoa caribaeorum. Int J Syst Evol Microbiol 61:3009–3015CrossRefGoogle Scholar
  5. 5.
    Doi H, Chinen A, Fukuda H, Usuda Y (2016) Vibrio algivorus sp. nov., an alginate- and agarose-assimilating bacterium isolated from the gut flora of a turban shell marine snail. Int J Syst Bacteriol 66:3164–3169CrossRefGoogle Scholar
  6. 6.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution Int J org Evolution 39:783–791CrossRefGoogle Scholar
  7. 7.
    Fitch WM (1971) Toward defining the course of evolution: Minimum change for a specified tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  8. 8.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  9. 9.
    Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469CrossRefGoogle Scholar
  10. 10.
    Kim JK, Kang MS, Park SC, Kim KM, Choi K, Yoon MH, Im WT (2015) Sphingosinicella ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 53:435–441CrossRefPubMedGoogle Scholar
  11. 11.
    Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi Het al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefPubMedGoogle Scholar
  12. 12.
    Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press Cambridge, New York, CambridgeCrossRefGoogle Scholar
  13. 13.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt EM (ed) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–176Google Scholar
  14. 14.
    Lucena T, Ruvira MA, Arahal DR, Macián MC, Pujalte MJ (2012)) Vibrio aestivus sp. nov. and Vibrio quintilis sp. nov., related to Marisflavi and Gazogenes clades, respectively. Int J Syst Syst Appl Microbiol 35:427–431CrossRefGoogle Scholar
  15. 15.
    Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  16. 16.
    Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  17. 17.
    Moore DD, Dowhan D (1995) Preparation and analysis of DNA. In: Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2–11Google Scholar
  18. 18.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Bio Evol 4:406–425Google Scholar
  19. 19.
    Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  20. 20.
    Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, pp 607–655Google Scholar
  21. 21.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Biological Sciences and BiotechnologyHannam University Jeonmin-dongDaejeonRepublic of Korea
  2. 2.Department of BiotechnologyHankyong National UniversityKyonggi-doRepublic of Korea

Personalised recommendations