Current Microbiology

, Volume 75, Issue 3, pp 256–265 | Cite as

Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings

  • Sandra M. Montaño-Salazar
  • Juan Lizarazo-Marriaga
  • Pedro F. B. Brandão


Microbiological induced calcium carbonate or calcite precipitation (MICP) has become a highly researched issue due to its multiple applications in the construction industry, being a promising alternative with a great biotechnological importance. In this work, potential calcite precipitation inducing bacteria were isolated from mortar and concrete samples of different buildings at the National University of Colombia. Eighteen crystal-precipitating strains were recovered in Urea-CaCl2 solid medium. The 16S rRNA gene sequencing identified isolates as Arthrobacter, Psychrobacillus and Rhodococcus genera. It is reported, for the first time, the calcite precipitation by P. psycrodurans and R. qingshengii. Optical microscopy and Scanning Electron Microscopy showed crystals with irregular and spherical shapes, and beige and white colours. Furthermore, crystals formation appeared to be strain-specific. X-Ray diffraction analysis confirmed crystals composition as CaCO3. Biocementation tests showed that MICP treatments of mortar cubes using P. psycrodurans caused an increase in their compressive strength compared to control samples. The positive action of a native MICP strain in mortar blocks biomineralization is shown, which is of great interest and potential for the construction industry.



Financial support to SMMS is thanked to División de Investigación Sede Bogotá (DIB), Grant No. 19380/19381. The Microbiology Laboratories of the Biology and Pharmacy Departments are thanked for allowing access to the microscopy and incubation equipment. Juan Mauricio Lozano Valcarcel from the Materials Engineering laboratories is also thanked for his collaboration in biocementation tests. Finally, we thank Professor Sa-YoulGhim, College of Natural Sciences, Kyungpook National University, Daegu, Korea, for permitting access to strain A. crystallopoietes KNUC403.


This study was funded by the División de Investigación Sede Bogotá (DIB), Universidad Nacional de Colombia (Grant Number DIB 19380/19381).

Compliance with Ethical Standards

Conflict of interest

Sandra M. Montaño-Salaza, Juan Lizarazo-Marriaga, and Pedro F. B. Brandão declares that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

284_2017_1373_MOESM1_ESM.pdf (352 kb)
Supplementary material 1 (PDF 352 KB)


  1. 1.
    Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol 36:981–988. doi: 10.1007/s10295-009-0578-z CrossRefPubMedGoogle Scholar
  2. 2.
    Achal V, Mukherjee A, Reddy MS (2011) Effect of calcifying bacteria on permeation properties of concrete structures. J Ind Microbiol Biotechnol 38:1229–1234. doi: 10.1007/s10295-010-0901-8 CrossRefPubMedGoogle Scholar
  3. 3.
    Al-Salloum Y, Abbas H, Sheikh QI, Hadi S, Alsayed S, Almusallam T (2017) Effect of some biotic factors on microbially-induced calcite precipitation in cement mortar. Saudi J Biol Sci 24:286–294. doi: 10.1016/j.sjbs.2016.01.016 CrossRefPubMedGoogle Scholar
  4. 4.
    Al-Thawadi SM (2011) Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. J Adv Sci Eng Res 1:98–114Google Scholar
  5. 5.
    Al-Thawadi S, Cord-Ruwisch R (2012) Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge. J Adv Sci Eng Res 2:12–26Google Scholar
  6. 6.
    Andalib R, Majid MZA, Hussin MW, Ponraj M, Keyvanfar A, Mirza J, Han-Seung Lee (2016) Optimum concentration of Bacillus megaterium for strengthening structural concrete. Con Build Mat 118:180–193. doi: 10.1016/j.conbuildmat.2016.04.142 CrossRefGoogle Scholar
  7. 7.
    Bala M, Kumar S, Raghava GPS, Mayilraj S (2013) Draft genome sequence of Rhodococcus qingshengii strain BKS 20–40. Genome Announc. doi: 10.1128/genomeA.00128-13 Google Scholar
  8. 8.
    Banerjee S, Joshi SR (2014) Ultrastructural analysis of calcite crystal patterns formed by biofilm bacteria associated with cave speleothems. J Microsc Ultra 2:217–223. doi: 10.1016/j.jmau.2014.06.001 Google Scholar
  9. 9.
    Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 28:404–409CrossRefPubMedGoogle Scholar
  10. 10.
    Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83CrossRefPubMedGoogle Scholar
  11. 11.
    Braissant O, Cailleau G, Dupraz C, Verrecchia EP (2003) Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. J Sediment Res 73:485–490. doi: 10.1306/111302730485 CrossRefGoogle Scholar
  12. 12.
    Brandão PFB, Torimura M, Kurane R, Bull AT (2002) Dereplication for biotechnology screening: PyMS analysis and PCR–RFLP–SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Appl Microbiol Biotechnol 58:77–83CrossRefPubMedGoogle Scholar
  13. 13.
    Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529CrossRefGoogle Scholar
  14. 14.
    Cárdenas A, Rodriguez-R LM, Pizarro V, Cadavid LF, Arévalo-Ferro C (2012) Shifts in bacterial communities of two Caribbean reef-building coral species affected by white plague disease. ISME J 6:502–512. doi: 10.1038/ismej.2011.123 CrossRefPubMedGoogle Scholar
  15. 15.
    Castanier S, Le Métayer-Levrel G, Perthuisot JP (1999) Ca-carbonates precipitation and limestone genesis – the microbiologist point of view. Sediment Geol 126:9–23. doi: 10.1016/S0037-0738(99)00028-7 CrossRefGoogle Scholar
  16. 16.
    Chahal N, Rajor A, Siddique R (2013) Calcium carbonate precipitation by different bacterial strains. Afr J Biotechnol 10:8359–8372. doi: 10.5897/AJB11.345 Google Scholar
  17. 17.
    Christensen WB (1946) Urea decomposition as a means of differentiating Proteus and Paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466PubMedPubMedCentralGoogle Scholar
  18. 18.
    De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136. doi: 10.1016/j.ecoleng.2009.02.006 CrossRefGoogle Scholar
  19. 19.
    De Muynck W, Debrouwer D, De Belie N, Verstraete W (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cement Concrete Res 38:1005–1014. doi: 10.1016/j.cemconres.2008.03.005 CrossRefGoogle Scholar
  20. 20.
    Dhami NK, Mukherjee A, Reddy MS (2012) Biofilm and microbial applications in biomineralized concrete. In: Seto J (ed), Advanced topics in biomineralization, InTech, Rijeka, pp 137–156. doi: 10.5772/31124 Google Scholar
  21. 21.
    Dhami NK, Reddy MS, Mukherjee A (2012) Improvement in strength properties of ash bricks by bacterial calcite. Ecol Eng 39:31–35. doi: 10.1016/j.ecoleng.2011.11.011 CrossRefGoogle Scholar
  22. 22.
    Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:314. doi: 10.3389/fmicb.2013.00314 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17:357–367. doi: 10.1007/s10532-005-9006-x CrossRefPubMedGoogle Scholar
  24. 24.
    Ehrlich HL (1998) Geomicrobiology: Its significance for geology. Earth-Sci Rev 45:45–60. doi: 10.1016/S0012-8252(98)00034-8 CrossRefGoogle Scholar
  25. 25.
    El-Rahman HAA, Fritze D, Spröer C, Claus D (2002) Two novel psychrotolerant species, Bacillus psychrotolerans sp. nov. and Bacillus psychrodurans sp. nov., which contain ornithine in their cell walls. Int J Syst Evol Microbiol 52:2127–2133. doi: 10.1099/00207713-52-6-2127 Google Scholar
  26. 26.
    Folk RL (1993) SEM imaging of bacteria and nanobacteria in carbonate sediments and rocks. J Sediment Res 63:990–999. doi: 10.1306/D4267C67-2B26-11D7-8648000102C1865D Google Scholar
  27. 27.
    Fujita Y, Ferris F, Lawson R, Colwell F, Smith R (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol 17:305–318CrossRefGoogle Scholar
  28. 28.
    Ghosh P, Mandal S, Chattopadhyay BD, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cem Concr Res 35:1980–1983. doi: 10.1016/j.cemconres.2005.03.005 CrossRefGoogle Scholar
  29. 29.
    Ghosh S, Biswas M, Chattopadhyay BD, Mandal S (2009) Microbial activity on the microstructure of bacteria modified mortar. Cement Concrete Comp 31:93–98. doi: 10.1016/j.cemconcomp.2009.01.001 CrossRefGoogle Scholar
  30. 30.
    Guo Y, Yang L, Yang X, Zhang X, Zhu S, Jiang K (2003) Effect of self assembly of sodium acrylate on the crystallization of calcium carbonate. Macromol Biosci 3:163–168. doi: 10.1002/mabi.200390021 CrossRefGoogle Scholar
  31. 31.
    Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76. doi: 10.1080/0892701021000041078 CrossRefPubMedGoogle Scholar
  32. 32.
    Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7. doi: 10.1023/A:1015135629155 CrossRefGoogle Scholar
  33. 33.
    Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD (2003) Strain-specific ureolytic microbial calcium carbonate precipitation. Appl Environ Microbiol 69:4901–4909. doi: 10.1128/AEM.69.8.4901-4909.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kato C, Li L, Tamaoka J, Horikoshi K (1997) Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles 1:117–123CrossRefPubMedGoogle Scholar
  35. 35.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  36. 36.
    Knorre H, Krumbein W (2000) Bacterial calcification. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 25–31CrossRefGoogle Scholar
  37. 37.
    Krishnamurthi S, Ruckmani A, Pukall R, Chakrabarti T (2010) Psychrobacillus gen. nov. and proposal for reclassification of Bacillus insolitus Larkin & Stokes, 1967, B. psychrotolerans Abd-El Rahman et al., 2002 and B. psychrodurans Abd-El Rahman et al., 2002 as Psychrobacillus insolitus comb. nov., Psychrobacillus psychrotolerans comb. nov. and Psychrobacillus psychrodurans comb. nov. Syst Appl Microbiol 33:367–373. doi: 10.1016/j.syapm.2010.06.003 CrossRefPubMedGoogle Scholar
  38. 38.
    Lane DJ (1991) 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics, vol 6. Wiley, New York, pp 115–175Google Scholar
  39. 39.
    Lian B, Chen J, Ji J, Teng HH (2006) Carbonate biomineralisation induced by soil bacterium Bacillus megaterium. Geochim Cosmochim Acta 70:5522–5535. doi: 10.1016/j.gca.2006.08.044 CrossRefGoogle Scholar
  40. 40.
    López-García P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, Moreira D (2005) Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 9:263–274. doi: 10.1007/s00792-005-0457-0 CrossRefPubMedGoogle Scholar
  41. 41.
    NTC 220 (2012). Norma Técnica Colombiana 220, Determinación de la resistencia de morteros de cemento hidráulico a la compresión, usando cubos de 50 mm ó 2 pulgadas de lado (ASTM C109:2011)Google Scholar
  42. 42.
    Park SJ, Park YM, Chun WY, Kim WJ, Ghim SY (2010) Calcite-forming bacteria for compressive strength improvement in mortar. J Microbiol Biotechnol 20:782–788PubMedGoogle Scholar
  43. 43.
    Pei R, Liu J, Wang S, Yang M (2013) Use of bacterial cell walls to improve the mechanical performance of concrete. Cement Concrete Comp 39:122–130. doi: 10.1016/j.cemconcomp.2013.03.024 CrossRefGoogle Scholar
  44. 44.
    Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using microorganisms. ACI Mater J 98:3–9. doi: 10.14359/10154 Google Scholar
  45. 45.
    Ramakrishnan SK, Panchalan RK, Bang SS (2001) Improvement of concrete durability by bacterial mineral precipitation. In: 11th International Conference on Fracture, Turin, ItalyGoogle Scholar
  46. 46.
    Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67CrossRefPubMedGoogle Scholar
  47. 47.
    Seifan M, Samani AK, Berenjian A (2016) Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol 100:2591–2602. doi: 10.1007/s00253-016-7316-z CrossRefPubMedGoogle Scholar
  48. 48.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  49. 49.
    Schwieger F, Tebbe CC (1998) A new approach to utilize PCR–single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876PubMedPubMedCentralGoogle Scholar
  50. 50.
    Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77–81. doi: 10.1038/35065071 CrossRefPubMedGoogle Scholar
  51. 51.
    Siddique R, Chahal NK (2011) Effect of ureolytic bacteria on concrete properties. Constr Build Mater 25:3791–3801. doi: 10.1016/j.conbuildmat.2011.04.010 CrossRefGoogle Scholar
  52. 52.
    Söllner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C, Nicolson T (2003) Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 302:282–286. doi: 10.1126/science.1088443 CrossRefPubMedGoogle Scholar
  53. 53.
    Stackebrandt E, Goebel BM (1994) Taxonomic Note: A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849. doi.:  10.1099/00207713-44-4-846 CrossRefGoogle Scholar
  54. 54.
    Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571. doi: 10.1016/S0038-0717(99)00082-6 CrossRefGoogle Scholar
  55. 55.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 36:139–145CrossRefPubMedGoogle Scholar
  58. 58.
    Tourney J, Ngwenya BT (2009) Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chem Geol 262:138–146. doi: 10.1016/j.chemgeo.2009.01.006 CrossRefGoogle Scholar
  59. 59.
    Tziviloglou E, Wiktor V, Jonkers HM, Schlangen E (2016) Bacteria-based self-healing concrete to increase liquid tightness of cracks. Constr Build Mater 122:118–125. doi: 10.1016/j.conbuildmat.2016.06.080 CrossRefGoogle Scholar
  60. 60.
    Umar M, Kassim KA, Chiet KTP (2016) Biological process of soil improvement in civil engineering: A review. J Rock Mech Geotech Eng 8:767–774. doi: 10.1016/j.jrmge.2016.02.004 CrossRefGoogle Scholar
  61. 61.
    Warren LA, Maurice PA, Parmar N, Ferris FG (2001) Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol J 18:93–115. doi: 10.1080/01490450151079833 CrossRefGoogle Scholar
  62. 62.
    Xu JL, He J, Wang ZC, Wang K, Li WJ, Tang SK, Li SP (2007) Rhodococcus qingshengiisp. nov., a carbendazim-degrading bacterium. Int J Syst Evol Microbiol 57:2754–2757. doi: 10.1099/ijs.0.65095-0 CrossRefPubMedGoogle Scholar
  63. 63.
    Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 4:4. doi: 10.3389/fbioe.2016.00004 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sandra M. Montaño-Salazar
    • 1
  • Juan Lizarazo-Marriaga
    • 2
  • Pedro F. B. Brandão
    • 3
  1. 1.Departamento de Biología, Facultad de CienciasUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Grupo de Investigación en Análisis, Diseño y Materiales – GIES, Facultad de IngenieríaUniversidad Nacional de ColombiaBogotáColombia
  3. 3.Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (G.E.R.M.I.N.A.), Laboratorio de Microbiología Ambiental y Aplicada, Departamento de Química, Facultad de CienciasUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations