Advertisement

Current Microbiology

, Volume 75, Issue 3, pp 247–255 | Cite as

Genomic Analysis of Bacillus sp. Strain B25, a Biocontrol Agent of Maize Pathogen Fusarium verticillioides

  • Nadia R. Douriet-Gámez
  • Ignacio E. Maldonado-Mendoza
  • Enrique Ibarra-Laclette
  • Jochen Blom
  • Carlos L. Calderón-Vázquez
Article

Abstract

Bacillus sp. B25 is an effective biocontrol agent against the maize pathogenic fungus Fusarium verticillioides (Fv). Previous in vitro assays have shown that B25 has protease, glucanase, and chitinase activities and siderophores production; however, specific mechanisms by which B25 controls Fv are still unknown. To determine the genetic traits involved in biocontrol, B25 genome was sequenced and analyzed. B25 genome is composed of 5,113,413 bp and 5251 coding genes. A multilocus phylogenetic analysis (MLPA) suggests that B25 is closely related to the Bacillus cereus group and a high percentage (70–75%) of the genetic information is conserved between B25 and related strains, which include most of the genes associated to fungal antagonism. Some of these genes are shared with some biocontrol agents of the Bacillus genus and less with Pseudomonas and Serratia strains. We performed a genomic comparison between B25 and five Bacillus spp., Pseudomonas and Serratia strains. B25 contains genes involved in a wide variety of antagonistic mechanisms including chitinases, glycoside hydrolases, siderophores, antibiotics, and biofilm production that could be implicated in root colonization. Also, 24 genomic islands and 3 CRISPR sequences were identified in the B25 genome. This is the first comparative genome analysis between strains belonging to the B. cereus group and biocontrol agents of phytopathogenic fungi. These results are the starting point for further studies on B25 gene expression during its interaction with Fv.

Keywords

Bacillus Biocontrol Sequencing Comparative genomics 

Notes

Acknowledgements

Financial support was provided by the Fundación Produce Sinaloa (2009–2013) and SIP-IPN (SIP 20144103, SIP 20144021, SIP 20150118). NRDG received Ph.D. fellowships from CONACyT and SIP-IPN.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

284_2017_1372_MOESM1_ESM.xls (320 kb)
Supplementary material 1 (XLS 319 KB)
284_2017_1372_MOESM2_ESM.xls (1.2 mb)
Supplementary material 2 (XLS 1247 KB)
284_2017_1372_MOESM3_ESM.xls (1.4 mb)
Supplementary material 3 (XLS 1388 KB)
284_2017_1372_MOESM4_ESM.xls (144 kb)
Supplementary material 4 (XLS 144 KB)
284_2017_1372_MOESM5_ESM.doc (5.7 mb)
Supplementary material 5 (DOC 5838 KB)

References

  1. 1.
    Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150(Pt 7):2029–2035. doi: 10.1099/mic.0.26980-0 CrossRefPubMedGoogle Scholar
  2. 2.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9(1):75. doi: 10.1186/1471-2164-9-75 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bais HP (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin sroduction. Plant Physiol 134(1):307–319. doi: 10.1104/pp.103.028712 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Beaz-Hidalgo R, Hossain MJ, Liles MR, Figueras MJ (2015) Strategies to avoid wrongly labelled genomes using as example the detected wrong taxonomic affiliation for Aeromonas genomes in the GenBank database. PLoS ONE 10(1):e0115813. doi: 10.1371/journal.pone.0115813 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL, Brinkman FSL (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45:W30–W35. doi: 10.1093/nar/gkx343 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A (2009) EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinform 10:154. doi: 10.1186/1471-2105-10-154 CrossRefGoogle Scholar
  7. 7.
    Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27(4):578–579CrossRefPubMedGoogle Scholar
  8. 8.
    Boetzer M, Pirovano W (2012) Toward almost closed genomes with GapFiller. Genome Biol 13:R16CrossRefGoogle Scholar
  9. 9.
    Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140(1–2):27–37CrossRefPubMedGoogle Scholar
  10. 10.
    Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo J (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15(3):848–864. doi: 10.1111/j.1462-2920.2012.02860.x CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng T, Lin P, Jin S, Wu Y, Fu B, Long R, Liu D, Guo Y, Peng L, Xia Q (2014) Complete genome sequence of Bacillus bombysepticus, a pathogen leading to Bombyx mori black chest septicemia. Genome Announc 2(3):e00312–e00314. doi: 10.1128/genomeA.00312-14 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23:601–611CrossRefPubMedGoogle Scholar
  13. 13.
    Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422CrossRefPubMedGoogle Scholar
  14. 14.
    Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5(6):e11147. doi: 10.1371/journal.pone.0011147 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66:2808–2810CrossRefGoogle Scholar
  16. 16.
    Dunlap CA, Schisler DA, Bowman MJ, Rooney AP (2015) Genomic analysis of Bacillus subtilis OH 131.1 and co-culturing with Cryptococcus flavescens for control of Fusarium head blight. Plant Gene 2:1–9. doi: 10.1016/j.plgene.2015.03.002 CrossRefGoogle Scholar
  17. 17.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi: 10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Figueroa-López AM, Cordero-Ramírez JD, Martínez-Álvarez JC, López-Meyer M, Lizárraga-Sánchez GJ, Félix-Gastélum R, Castro-Martínez C, Maldonado-Mendoza IE (2016) Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Springer Plus 5 (1):330. doi: 10.1186/s40064-016-1780-x CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Figueroa-López AM, Leyva-Madrigal KY, Cervantes-Gámez RG, Beltrán-Arredondo LI, Douriet-Gámez ND, Castro-Martínez C, Maldonado-Mendoza IE (2017) Induction of Bacillus cereus chitinases as a response to lysates of Fusarium verticillioides. Rom Biotechnol Lett 22 (4)Google Scholar
  20. 20.
    Gao T, Foulston L, Chai Y, Wang Q, Losick R (2015) Alternative modes of biofilm formation by plant-associated Bacillus cereus. Microbiol Open 4(3):452–464. doi: 10.1002/mbo3.251 CrossRefGoogle Scholar
  21. 21.
    Gao X-A, Ju W-T, Jung W-J, Park R-D (2008) Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohyd Polym 72:513–520CrossRefGoogle Scholar
  22. 22.
    Garbeva P, van Elsas JD, de Boer W (2012) Draft genome sequence of the antagonistic rhizosphere bacterium Serratia plymuthica strain PRI-2C. J Bacteriol 194(15):4119–4120. doi: 10.1128/jb.00679-12 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D (2005) A comparative study of Bacillus cereus. Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5(14):3696–3711. doi: 10.1002/pmic.200401225 CrossRefPubMedGoogle Scholar
  24. 24.
    Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57. doi: 10.1093/nar/gkm360 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Guo Q, Li S, Lu X, Zhang X, Wang P, Ma P (2014) Complete genome sequence of Bacillus subtilis BAB-1, a biocontrol agent for suppression of tomato gray mold. Genome Announc 2(4):e00744. doi: 10.1128/genomeA.00744-14 doiCrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108CrossRefPubMedGoogle Scholar
  27. 27.
    He J, Shao X, Zheng H, Li M, Wang J, Zhang Q, Li L, Liu Z, Sun M, Wang S, Yu Z (2010) Complete genome sequence of Bacillus thuringiensis mutant strain BMB171. J Bacteriol 192(15):4074–4075. doi: 10.1128/jb.00562-10 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacilllus thuringiensis. Microbiol Rev 53(2):242–255PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hollensteiner J, Wemheuer F, Harting R, Kolarzyk AM, Diaz Valerio SM, Poehlein A, Brzuszkiewicz EB, Nesemann K, Braus-Stromeyer SA, Braus GH, Daniel R, Liesegang H (2017) Bacillus thuringiensis and Bacillus weihenstephanensis inhibit the growth of phytopathogenic Verticillium species. Front Microbiol 7(2171). doi: 10.3389/fmicb.2016.02171
  30. 30.
    Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. Fems Microbiol Rev 33(2):376–393. doi: 10.1111/j.1574-6976.2008.00136.x CrossRefPubMedGoogle Scholar
  31. 31.
    Lee D-H, Kim HR, Chung HY, Lim JG, Kim S, Kim SK, Ku H-J, Kim H, Ryu S, Choi SH, Lee J-H (2015) Complete genome sequence of Bacillus cereus FORC_005, a food-borne pathogen from the soy sauce braised fish-cake with quail-egg. Stand Genom Sci 10:(97)CrossRefGoogle Scholar
  32. 32.
    Lee JY, Passalacqua KD, Hanna PC, Sherman DH (2011) Regulation of petrobactin and bacillibactin biosynthesis in Bacillus anthracis under iron and oxygen variation. PLoS ONE 6(6):e20777. doi: 10.1371/journal.pone.0020777 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lee KJ, Oh BT, Seralathan KK (2013) Advances in plant growth promoting rhizobacteria for biological control of plant diseases. Springer, Berlin, pp 1–13. doi: 10.1007/978-3-642-33639-3_1
  34. 34.
    Lee YS, Kim BY, Ahn JH, Song J, Seol YJ, Kim WG, Weon HY (2012) Draft genome sequence of the biocontrol bacterium Bacillus amyloliquefaciens strain M27. J Bacteriol 194(24):6934–6935CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lefort F, Calmin G, Pelleteret P, Farinelli L, Osteras M, Crovadore J (2014) Whole-genome shotgun sequence of Bacillus amyloliquefaciens strain UASWS BA1, a bacterium antagonistic to plant pathogenic fungi. Genome Announc 2(1):e00016-00014. doi: 10.1128/genomeA.00016-14 doiCrossRefGoogle Scholar
  36. 36.
    Li B, Li Q, Xu Z, Zhang N, Shen Q, Zhang R (2014) Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front Microbiol. doi: 10.3389/fmicb.2014.00636 Google Scholar
  37. 37.
    Li L, Stoeckert CJ, Roos D-S (2003) OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res 13(9):2178–2189CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Li P, Kwok AHY, Jiang JW, Ran T, Xu D, Wang W, Leung FC (2015) Comparative genome analyses of Serratia marcescens FS14 reveals its high antagonistic potential. PLoS ONE 10(4):e0123061. doi: 10.1371/journal.pone.0123061 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liu G, Song L, Shu C, Wang P, Deng C, Peng Q, Lereclus D, Wang X, Huang D, Zhang J, Song F (2013) Complete genome sequence of Bacillus thuringiensis subsp. kurstaki Strain HD73. Genome Announc 1(2):e00080-00013CrossRefGoogle Scholar
  40. 40.
    Lizárraga-Sánchez GJ, Leyva-Madrigal KY, Sánchez-Peña P, Quiroz-Figueroa FR, Maldonado-Mendoza IE (2015) Bacillus cereus sensu lato strain B25 controls maize stalk and ear rot in Sinaloa, Mexico. Field Crops Res 176:11–21. doi: 10.1016/j.fcr.2015.02.015 CrossRefGoogle Scholar
  41. 41.
    Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, Shaffer BT, Elbourne LDH, Stockwell VO, Hartney SL, Breakwell K, Henkels MD, Tetu SG, Rangel LI, Kidarsa TA, Wilson NL, van de Mortel JE, Song C, Blumhagen R, Radune D, Hostetler JB, Brinkac LM, Durkin AS, Kluepfel DA, Wechter WP, Anderson AJ, Kim YC, Pierson LS, Pierson EA, Lindow SE, Kobayashi DY, Raaijmakers JM, Weller DM, Thomashow LS, Allen AE, Paulsen IT (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8(7):e1002784. doi: 10.1371/journal.pgen.1002784 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Louwen R, Staals RHJ, Endtz HP, van Baarlen P, van der Oost J (2014) The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev 78(1):74–88. doi: 10.1128/MMBR.00039-13 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 53:661–673CrossRefPubMedGoogle Scholar
  44. 44.
    Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(Database issue):D200–D203Google Scholar
  45. 45.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Goodwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in open microfabricated high density picoliter reactors. Nature 437(7057):376–380. doi: 10.1038/nature03959 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526(7571):55–61. doi: 10.1038/nature15386 doiCrossRefPubMedGoogle Scholar
  47. 47.
    Matsuda Y, Iida Y, Shinogi T, Kakutani K, Nonomura T, Toyoda H (2001) In vitro suppression of mycelial growth of Fusarium oxysporum by extracellular chitosanase of Sphingobacterium multivorum and cloning of the chitosanase gene csnSM1. J Gen Plant Pathol 67:318–324CrossRefGoogle Scholar
  48. 48.
    Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39(suppl):W339–W346. doi: 10.1093/nar/gkr466 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Neupane S, Finlay RD, Kyrpides NC, Goodwin L, Alström S, Lucas S, Land M, Han J, Lapidus A, Cheng JF, Bruce D, Pitluck S, Peters L, Ovchinnikova G, Held B, Han C, Detter JC, Tapia R, Hauser L, Ivanova N, Pagani I, Woyke T, Klenk HP, Högberg N (2012) Complete genome sequence of the plant-associated Serratia plymuthica strain AS13. Stand Genomic Sci 7(1):22–30. doi: 10.4056/sigs.2966299 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ni H, Zeng S, Qin X, Sun X, Zhang S, Zhao X, Yu Z, Li L (2015) Molecular docking and site-directed mutagenesis of Bacillus thuringiensis chitinase to improve chitinolytic, synergistic lepidopteran-larvicidal and nematicidal activities. Int J Biol Sci 11(3):304–315. doi: 10.7150/ijbs.10632 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pal KK, McSpadden GB (2006) Biological control of plant pathogens. Plant Health Instruct. doi: 10.1094/PHI-A-2006-1117-02 Google Scholar
  52. 52.
    Priest FG, Barker M, Baillie LWJ, Holmes EC, Maiden MCJ (2004) Population structure and evolution of the Bacillus cereus group. J Bacteriol 186(23):7959–7970. doi: 10.1128/jb.186.23.7959-7970.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Rahman MM, Hossain DM, Suzuki K, Shiiya A, Suzuki K, Dey TK, Nonaka M, Harada N (2016) Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathol 45(1):103–117. doi: 10.1007/s13313-016-0397-4 CrossRefGoogle Scholar
  54. 54.
    Rasko A, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus group or organisms. FEMS Microbiol Rev 29(1):303–329. doi: 10.1016/j.femsre.2004.12.005 PubMedGoogle Scholar
  55. 55.
    Reiter L, Tourasse NJ, Fouet A, Loll R, Davison S, Okstad OA, Piehler AP, Kolsto AB (2011) Evolutionary history and functional characterization of three large genes involved in sporulation in Bacillus cereus group bacteria. J Bacteriol 193(19):5420–5430. doi: 10.1128/jb.05309-11 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Reyes-Ramírez A, Escudero-Abarca BI, Aguilar-Uscanga G, Hayward-Jones PM, Barboza-Corona JE (2004) Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J Food Sci 69(5):M131-M134. doi: 10.1111/j.1365-2621.2004.tb10721.x Google Scholar
  57. 57.
    Rodriguez -R. LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Preprints 4:e1900v1. doi: 10.7287/peerj.preprints.1900v1 Google Scholar
  58. 58.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  59. 59.
    Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17(1):14–56. doi: 10.1128/CMR.17.1.14-56.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sheppard AE, Poehlein A, Rosenstiel P, Liesegang H, Schulenburg H (2013) Complete genome sequence of Bacillus thuringiensis strain 407 Cry. Genome Announc 1(1):e00158CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    St John J (2016) SeqPrep. https://github.com/jstjohn/SeqPrep
  62. 62.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi: 10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Xiong Z, Jiang Y, Qi D, Lu H, Yang F, Yang J, Chen L, Sun L, Xu X, Xue Y, Zhu Y, Jin Q (2009) Complete genome sequence of the extremophilic Bacillus cereus strain Q1 with industrial applications. J Bacteriol 191(3):1120–1121. doi: 10.1128/jb.01629-08 CrossRefPubMedGoogle Scholar
  64. 64.
    Xu YB, Chen M, Zhang Y, Wang M, Wang Y, Huang Q, Wang X, Wang G (2014) The phosphotransferase system gene ptsI in the endophytic bacterium Bacillus cereus is required for biofilm formation, colonization, and biocontrol against wheat sharp eyespot. FEMS Microbiol Lett 354(2):142–152. doi: 10.1111/1574-6968.12438 CrossRefPubMedGoogle Scholar
  65. 65.
    Zhao Y, Selvaraj JN, Xing F, Zhou L, Wang Y, Song H, Tan X, Sun L, Sangare L, Elodie FY, Liu Y (2014) Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS ONE 9(3):e92486CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhu L, Tian LJ, Zheng J, Gao QL, Wang YY, Peng DH, Ruan LF, Sun M (2015) Complete genome sequence of Bacillus thuringiensis serovar galleriae strain HD-29, a typical strain of commercial biopesticide. J Biotechnol 195:108–109. doi: 10.1016/j.jbiotec.2014.12.021 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Nadia R. Douriet-Gámez
    • 1
  • Ignacio E. Maldonado-Mendoza
    • 1
  • Enrique Ibarra-Laclette
    • 2
  • Jochen Blom
    • 3
  • Carlos L. Calderón-Vázquez
    • 1
  1. 1.Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad SinaloaInstituto Politécnico NacionalGuasaveMexico
  2. 2.Instituto de Ecología A. C. (INECOL), Red de Estudios Moleculares AvanzadosXalapaMexico
  3. 3.Bioinformatics and System BiologyJustus-Liebig UniversityGiessenGermany

Personalised recommendations