Skip to main content
Log in

A Comparative Evaluation Study of Growth Conditions for Culturing the Isolates of Campylobacter spp.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Campylobacter is one of the leading causes of foodborne travelers’ diarrhea worldwide. Although a large number cases of campylobacteriosis go undiagnosed or unreported, it is considered as the second most common foodborne illness in the USA affecting over 1.3 million individuals every year. Of various Campylobacter species, C. jejuni, C. coli, and C. lari have been accounted for causing more than 99% of human infections. Thus, there is a need to have efficient isolation method to protect public health on food safety and monitoring the burden of campylobacteriosis. Nevertheless, it is a challenging task as the exposure of environmental stress during isolation process makes Campylobacter species less culturable. Sixteen Campylobacter spp. were used to evaluate the current protocols used in Campylobacter isolation. For optimal recovery, a range of growth media (Bolton, Columbia, Muller Hinton, CVA Campy and mCCDA), incubation temperatures, and additional supplements (including antibiotics) were tested. Blood agars without antibiotics were sufficient for the initial recovery. Afterward, the isolates could grow on agars without any supplements, and in some cases growth was observed in the presence of antibiotics. Incubation at 37 °C was found to be the optimal temperature for the recovery and the growth of most species. Additionally, a food adulteration study was also carried out by artificially contaminating three food matrices that included egg, milk, and infant cereal, with two isolates of C. jejuni and C. coli. Results of this study should provide the insight for culturing and isolation of Campylobacter from food and other sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolton FJ, Coates D (1983) Development of a blood-free Campylobacter medium—screening-tests on basal media and supplements, and the ability of selected supplements to facilitate aerotolerance. J Appl Bacteriol 54:115–125

    Article  CAS  PubMed  Google Scholar 

  2. Bolton FJ, Robertson L (1982) A selective medium for isolating Campylobacter-jejuni-coli. J Clin Pathol 35:462–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bolton FJ, Hutchinson DN, Coates D (1984) Blood-free selective medium for isolation of Campylobacter jejuni from feces. J Clin Microbiol 19:169–171

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Casals C, Schellenberg D, Urassa H, Vargas M, Gasco J, Kahigwa E (2004) Etiology of diarrhea in children less than five years of Age. Am J Trop Med Hyg 70:536–539

    PubMed  Google Scholar 

  5. Dasti JI, Tareen AM, Lugert R, Zautner AE, Gross U (2010) Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol 300:205–211

    Article  CAS  PubMed  Google Scholar 

  6. Davis L, DiRita V (2005) Growth and laboratory maintenance of Campylobacter jejuni. Curr Protoc Microbiol. doi:10.1002/9780471729259.mc08a01s10

    Google Scholar 

  7. Epps SV, Harvey RB, Hume ME, Phillips TD, Anderson RC, Nisbet DJ (2013) Foodborne Campylobacter: infections, metabolism, pathogenesis and reservoirs. Int J Environ Res Public Health 10:6292–6304

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fakruddin M, Mannan KSB, Andrews S (2013) Viable but nonculturable bacteria: food safety and public health perspective. ISRN Microbiol. doi:10.1155/2013/703813

    PubMed  PubMed Central  Google Scholar 

  9. FDA Bacteriological Analytical Manual (BAM). https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm072616.htm. Accessed Jan 6, 2017

  10. Fitzgerald C, Nachamkin I (2015) Campylobacter and Arcobacter. In: Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (eds) Manual of clinical microbiology, 11th edn. ASM Press, Washington, DC. doi:10.1128/9781555817381.ch56

  11. Gardner TJ, Fitzgerald C, Xavier C, Klein R, Pruckler J, Stroika S, McLaughlin JB (2011) Outbreak of campylobacteriosis associated with consumption of raw peas. Clin Infect Dis 53:26–32

    Article  PubMed  Google Scholar 

  12. Gharst G, Oyarzabal OA, Hussain SK (2013) Review of current methodologies to isolate and identify Campylobacter spp. from foods. J Microbiol Methods 95:84–92

    Article  CAS  PubMed  Google Scholar 

  13. Guerry P (2007) Campylobacter flagella: not just for motility. Trends Microbiol 15:456–461

    Article  CAS  PubMed  Google Scholar 

  14. Gun-Munro J, Rennie RP, Thornley JH, Richardson HL, Hodge D, Lynch J (1987) Laboratory and clinical evaluation of isolation media for Campylobacter jejuni. J Clin Microbiol 25:2274–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaakoush NO, Castano-Rodriguez N, Mitchell HM, Man SM (2015) Global epidemiology of Campylobacter infection. Clin Microbiol Rev 28:687–720

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kabir MS, Hsieh YH, Simpson S, Kerdahi K, Sulaiman IM (2017) Evaluation of two standard and two chromogenic selective media for optimal growth and enumeration of isolates of 16 unique Bacillus species. J Food Prot 80:952–962

    Article  PubMed  Google Scholar 

  17. Komagamine T, Yuki N (2006) Ganglioside mimicry as a cause of Guillain-Barre syndrome. CNS Neurol Disord Drug Targets 5:391–400

    Article  CAS  PubMed  Google Scholar 

  18. Kuroki S, Saida T, Nukina M, Haruta T, Yoshioka M, Kobayashi Y, Nakanishi H (1993) Campylobacter jejuni strains from patients with Guillain-Barre syndrome belong mostly to Penner serogroup 19 and contain beta-N-acetylglucosamine residues. Ann Neurol 33:243–247

    Article  CAS  PubMed  Google Scholar 

  19. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5:258–278

    PubMed  PubMed Central  Google Scholar 

  20. Mace S, Haddad N, Zagorec M, Tresse O (2015) Influence of measurement and control of microaerobic gaseous atmospheres in methods for Campylobacter growth studies. Food Microbiol 52:169–176

    Article  CAS  PubMed  Google Scholar 

  21. Magajna BA, Schraft H (2015) Campylobacter jejuni biofilm cells become viable but non-culturable (VBNC) in low nutrient conditions at 4°C more quickly than their planktonic counterparts. Food Control 50:45–50

    Article  CAS  Google Scholar 

  22. Magajna BA, Schraft H (2016) Evaluation of propidium monoazide and quantitative PCR to quantify viable Campylobacter jejuni biofilm and planktonic cells in log phase and in a viable but nonculturable state. J Food Prot 78:1303–1311

    Article  Google Scholar 

  23. Man SM (2011) The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8:669–685

    Article  CAS  PubMed  Google Scholar 

  24. Moore JE, Corcoran D, Dooley JS, Fanning S, Lucey B, Matsuda M, McDowell DA, Megraud F, Millar BC, O’Mahony R, O’Riordan L, O’Rourke M, Rao JR, Rooney PJ, Sails A, Whyte P (2005) Campylobacter. Vet Res 36:351–382

    Article  CAS  PubMed  Google Scholar 

  25. Ng LK, Stiles ME, Taylor DE (1985) Comparison of basal media for culturing Campylobacter jejuni and Campylobacter coli. J Clin Microbiol 21:226–230

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oh E, McMullen L, Jeon B (2015) Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions. Front Microbiol 6:295–303

    PubMed  PubMed Central  Google Scholar 

  27. Penner JL (1988) The genus Campylobacter: a decade of progress. Clin Microbiol Rev 1:157–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peterson MC (1994) Clinical aspects of Campylobacter jejuni infections in adults. West J Med 161:148–152

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Portner DC, Leuschner RG, Murray BS (2007) Optimising the viability during storage of freeze-dried cell preparations of Campylobacter jejuni. Cryobiology 54:265–270

    Article  CAS  PubMed  Google Scholar 

  30. Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S (2014) Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Health 2:103–112

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rodgers JD, Clifton-Hadley FA, Marin C, Vidal AB (2010) An evaluation of survival and detection of Campylobacter jejuni and C. coli in broiler caecal contents using culture-based methods. J Appl Microbiol 109:1244–1252

    Article  CAS  PubMed  Google Scholar 

  32. Sahin O, Kobalka P, Zhang Q (2003) Detection and survival of Campylobacter in chicken eggs. J Appl Microbiol 95:1070–1079

    Article  CAS  PubMed  Google Scholar 

  33. Scallan E, Hoekstra RM, Angulo FG, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tallent SM, Kotewicz KM, Strain EA, Bennett RW (2012) Efficient isolation and identification of Bacillus cereus group. J AOAC Int 95:446–451

    Article  CAS  PubMed  Google Scholar 

  35. Teramura H, Iwasaki M, Ogihara H (2015) Development of a novel chromogenic medium for improved Campylobacter detection from poultry samples. J Food Prot 78:1750–1755

    Article  CAS  PubMed  Google Scholar 

  36. Vandamme P, Falsen E, Rossau R, Hoste B, Segers P, Tytgat R, De Ley J (1991) Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 41:88–103

    Article  CAS  PubMed  Google Scholar 

  37. Vondrakova L, Pazlarova J, Demnerova K (2014) Detection, identification and quantification of Campylobacter jejuni, coli and lari in food matrices all at once using multiplex qPCR. Gut Pathogens 6:12–21

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by funding from the FDA Commissioner’s Fellowship Program. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Disclaimer

The findings and conclusions made in this manuscript are those of the authors and do not necessarily represent the views or official position of U.S. Food and Drug Administration (FDA) or U.S. Department of Health and Human Services (DHHS). The names of vendors or manufacturers are provided as examples of available product sources; inclusion does not imply endorsement of the vendors, manufacturers, or products by FDA or DHHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irshad M. Sulaiman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, YH., Simpson, S., Kerdahi, K. et al. A Comparative Evaluation Study of Growth Conditions for Culturing the Isolates of Campylobacter spp.. Curr Microbiol 75, 71–78 (2018). https://doi.org/10.1007/s00284-017-1351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1351-6

Navigation