Skip to main content
Log in

Halorubrum salsamenti sp. nov., a Novel Halophilic Archaeon Isolated from a Brine of Salt Mine

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A non-motile, spherical or oval extremely halophilic archaeon, strain Y69T, was isolated from a brine of the Yunnan salt mine, China. Colonies on JCM 168 agar plate were round (1–2 mm in diameter), moist, and orange-pigmented. Phylogenetic analysis of the almost-complete 16S rRNA gene sequence showed that the isolate belonged to the species of the genus Halorubrum, with a close relationship to Halorubrum aidingense 31-hongT (98.5%), Halorubrum lacusprofundi ATCC 49239T (98.2%), and Halorubrum kocurii BG-1T (98.0%). The major polar lipids of strain Y69T were phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and a sulfated diglycosyl diether. Strain Y69T grew in 15–30% (w/v) NaCl. The temperature and pH ranges for growth were 25–50 °C and 6.5–9.0, respectively. Optimal growth occurred at 20% (w/v) NaCl, 42 °C, and pH 8.0. Mg2+ was required for growth. The DNA G+C content was determined to be 65.1 mol% by the thermal denaturation method. DNA–DNA hybridization values between strain Y69T and the closely related species were lower than 70%. Based on the data presented in this study, strain Y69T represents a novel species for which the name Halorubrum salsamenti sp. nov. is proposed. The type of the strain is Y69T (=CGMCC 1.15455T = JCM 31270T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bonelo G, Ventosa A, Megias M, Ruiz-Berraquero F (1984) The sensitivity of halobacteria to antibiotics. FEMS Microbiol Lett 21:341–345

    Article  CAS  Google Scholar 

  2. Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF (2004) Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 186:3980–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Çınar S, Mutlu MB (2016) Comparative analysis of prokaryotic diversity in solar salterns in eastern Anatolia (Turkey). Extremophiles 20:589–601

    Article  PubMed  Google Scholar 

  4. Corral P, de la Haba RR, Sánchez-Porro C, Amoozegar MA, Papke RT, Ventosa A (2015) Halorubrum persicum sp. nov., an extremely halophilic archaeon isolated from sediment of a hypersaline lake. Int J Syst Evol Microbiol 65:1770–17785

    Article  CAS  PubMed  Google Scholar 

  5. Cui HL, Lin ZY, Dong Y, Zhou PJ, Liu SJ (2007) Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:2204–2206

    Article  CAS  PubMed  Google Scholar 

  6. Cui HL, Tohty D, Zhou PJ, Liu SJ (2006) Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. Int J Syst Evol Microbiol 56:1631–1634

    Article  CAS  PubMed  Google Scholar 

  7. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  8. DeMaere MZ, Williams TJ, Allen MA, Brown MV, Gibson JA, Rich J, Lauro FM, Dyall-Smith M, Davenport KW, Woyke T, Kyrpides NC, Tringe SG, Cavicchioli R (2013) High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc Natl Acad Sci USA 110:16939–16944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Franzmann PD, Stackebrandt E, Sanderson K, Volkman JK, Cameron DE, Stevenson PL, Mcmeekin TA, Burton HR (1988) Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst Appl Microbiol 11:20–27

    Article  CAS  Google Scholar 

  11. González C, Gutiérrez C, Ramírez C (1978) Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715

    Article  PubMed  Google Scholar 

  12. Gupta RS, Naushad S, Baker S (2015) Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 65:1050–1069

    Article  CAS  PubMed  Google Scholar 

  13. Gutiérrez C, González C (1972) Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517

    PubMed  PubMed Central  Google Scholar 

  14. Gutiérrez MC, Castillo AM, Pagaling E, Heaphy S, Kamekura M, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2008) Halorubrum kocurii sp. nov., an archaeon isolated from a saline lake. Int J Syst Evol Microbiol 58:2031–2035

    Article  PubMed  Google Scholar 

  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  16. Hartmann R, Sickinger HD, Oesterhelt D (1980) Anaerobic growth of halobacteria. Proc Natl Acad Sci USA 77:3821–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Article  CAS  PubMed  Google Scholar 

  18. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  19. McGenity T, Grant WD (1995) Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 18:237–243

    Article  Google Scholar 

  20. McGenity TJ, Grant WD (2001) Genus VII. Halorubrum. Bergey’s manual of systematic bacteriology. Springer, New York, pp 320–324

    Google Scholar 

  21. McGenity TJ, Oren A (2012) Life in saline environments. In: Bell E (ed) Life at extremes: environments, organisms, and strategies for survival. CABI International, Wallingford, pp 402–437

    Chapter  Google Scholar 

  22. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R, Hashimoto T (2010) Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B’ (rpoB’) gene. Int J Syst Evol Microbiol 60:2398–2408

    Article  PubMed  Google Scholar 

  23. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  24. Oren A (2012) Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. Int J Syst Evol Microbiol 62:263–271

    Article  PubMed  Google Scholar 

  25. Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238

    Article  Google Scholar 

  26. Owen RJ, Hill LR (1979) The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In: Gibbs BM (ed) Identification methods for microbiologists. Academic Press, Cambridge, pp 217–296

    Google Scholar 

  27. Papke RT, Corral P, Ram-Mohan N, de la Haba RR, Sánchez-Porro C, Makkay A, Ventosa A (2015) Horizontal gene transfer, dispersal and haloarchaeal speciation. Life (Basel) 5:1405–1426

    Google Scholar 

  28. Papke RT, Koenig JE, Rodríguez-Valera F, Doolittle WF (2004) Frequent recombination in a saltern population of Halorubrum. Science 306:1928–1929

    CAS  PubMed  Google Scholar 

  29. Smibert RM, Krieg NR (1981) General characterization. In: Murray RGE et al (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 409–443

    Google Scholar 

  30. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Zhu L. Yang from the Kunming Institute of Botany, Chinese Academy of Sciences, for the help in sample collection, and Prof. Dr. Hua Xiang and Mr. Hong-Can Liu from the Institute of Microbiology, Chinese Academy of Sciences, for good suggestions and doing the DNA-DNA hybridization. This work was supported by Grants from the National Natural Science Foundation of China (31460003), the Anhui Provincial Key Lab of the Conservation, and Exploitation of Biological Resources (591601), the Anhui Provincial Natural Science Research Project (KJ2017A318), and the Education Department of Anhui province (gxyqZD2017011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoxing Chen.

Additional information

The GenBank/EMBL/DDBJ accession numbers of the 16S rRNA gene, rpoB′, and ef-2 sequences of strain Y69T are KX376706, KX595317, and KX595312, respectively. Three supplementary figures for cell morphology, thin-layer chromatogram of polar lipids, and Neighbor-Joining phylogenetic tree of 16S rRNA gene, rpoB′,  and ef-2 genes are available with the online supplementary materials.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., He, J., Zhang, J. et al. Halorubrum salsamenti sp. nov., a Novel Halophilic Archaeon Isolated from a Brine of Salt Mine. Curr Microbiol 74, 1358–1364 (2017). https://doi.org/10.1007/s00284-017-1325-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1325-8

Navigation