Current Microbiology

, Volume 74, Issue 11, pp 1337–1342 | Cite as

Effects of Disodium Fumarate on In Vitro Rumen Fermentation, The Production of Lipopolysaccharide and Biogenic Amines, and The Rumen Bacterial Community

  • Wei Jin
  • Chunxu Xue
  • Junhua Liu
  • Yuyang Yin
  • Weiyun Zhu
  • Shengyong Mao
Article

Abstract

The effect of disodium fumarate (DF) on the ruminal fermentation profiles, the accumulation of lipopolysaccharide (LPS) and bioamines, and the composition of the ruminal bacterial community was investigated by in vitro rumen fermentation. The addition of DF increased the total gas production; the concentrations of propionate, valerate, total volatile fatty acids, and ammonia–nitrogen; and the rumen pH after a 24 h fermentation. By contrast, DF addition decreased the ratio of acetate to propionate and the concentrations of lactate, lipopolysaccharide, methylamine, tryptamine, putrescine, histamine, and tyramine (P < 0.05). Principal coordinates analysis and molecular variance analysis showed that DF altered the ruminal bacterial community (P < 0.05). At the phylum level, DF decreased the proportion of Proteobacteria, and increased the proportions of Spirochaetae and Elusimicrobia (P < 0.05). At the genus level, DF decreased the percentage of Ruminobacter, while increasing the percentage of Succinivibrio and Treponema (P < 0.05). Overall, the results indicate that DF modified rumen fermentation and mitigated the production of several toxic compounds. Thus, DF has great potential for preventing subacute rumen acidosis in dairy cows and for improving the health of ruminants.

Supplementary material

284_2017_1322_MOESM1_ESM.docx (170 kb)
Supplementary material 1 (DOCX 169 kb)
284_2017_1322_MOESM2_ESM.docx (25 kb)
Supplementary material 2 (DOCX 24 kb)

References

  1. 1.
    Fernando SC, Purvis HT 2nd, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, Desilva U (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 76(22):7482–7490CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hattori K, Matsui H (2008) Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches. Anaerobe 14(2):87–93CrossRefPubMedGoogle Scholar
  3. 3.
    Alzahal O, Rustomo B, Odongo NE, Duffield TF, McBride BW (2007) Technical note: a system for continuous recording of ruminal pH in cattle. J Anim Sci 85(1):213–217CrossRefPubMedGoogle Scholar
  4. 4.
    Plaizier JC, Krause DO, Gozho GN, McBride BW (2008) Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J 176(1):21–31CrossRefPubMedGoogle Scholar
  5. 5.
    Mao S, Zhang R, Wang D, Zhu W (2012) The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet Res 8:237CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gozho GN, Krause DO, Plaizier JC (2007) Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows. J Dairy Sci 90(2):856–866CrossRefPubMedGoogle Scholar
  7. 7.
    Hespell RB (1979) Efficiency of growth by ruminal bacteria. Fed Proc 38(13):2707–2712PubMedGoogle Scholar
  8. 8.
    Mackie R, Gilchrist FM, Robberts AM, Hannah P, Schwartz HM (1978) Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. J Agric Sci 90(02):241–254CrossRefGoogle Scholar
  9. 9.
    Russell JB, DiezGonzalez F (1998) The effects of fermentation acids on bacterial growth. Adv Microb Physiol 39:205–234CrossRefPubMedGoogle Scholar
  10. 10.
    Nocek JE (1997) Bovine acidosis: implications on laminitis. J Dairy Sci 80(5):1005–1028CrossRefPubMedGoogle Scholar
  11. 11.
    Liu JH, Xu TT, Liu YJ, Zhu WY, Mao SY (2013) A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. Am J Physiol Regul Integr Comp Physiol 305(3):R232–R241CrossRefPubMedGoogle Scholar
  12. 12.
    Castillo C, Benedito JL, Méndez J, Pereira V, López-Alonso M, Miranda M, Hernández J (2004) Organic acids as a substitute for monensin in diets for beef cattle. Anim Feed Sci Technol 115(1):101–116CrossRefGoogle Scholar
  13. 13.
    Nagaraja TG, Avery TB, Bartley EE, Roof SK, Dayton AD (1982) Effect of lasalocid, monensin or thiopeptin on lactic acidosis in cattle. J Anim Sci 4(3):649–658CrossRefGoogle Scholar
  14. 14.
    Newbold CJ, Wallace RJ, McIntosh FM (1996) Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Brit J Nutr 76(2):249–261CrossRefPubMedGoogle Scholar
  15. 15.
    Callaway TR, Martin SA (1996) Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J Anim Sci 74(8):1982–1989CrossRefPubMedGoogle Scholar
  16. 16.
    Mao SY, Zhang G, Zhu WY (2007) Effect of disodium fumarate on in vitro rumen fermentation of different substrates and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. Asian Austral J Anim 20(4):543–549CrossRefGoogle Scholar
  17. 17.
    Martínez-Fernández G, Abecia L, Arco A, Cantalapiedra-Hijar G, Martín-García AI, Molina-Alcaide E, Kindermann M, Duval S, Yáñez-Ruiz DR (2014) Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. J Dairy Sci 97:3790–3799CrossRefPubMedGoogle Scholar
  18. 18.
    Theodorou MK, Williams BA, Dhanoa MS, Mcallan AB, France J (1994) A simple gas-production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Tech 48(3–4):185–197CrossRefGoogle Scholar
  19. 19.
    Jin W, Meng Z, Wang J, Cheng Y, Zhu W (2017) Effect of nitrooxy compounds with different molecular structures on the rumen methanogenesis, metabolic profile, and methanogenic community. Curr Microbiol 74(8):891–898CrossRefPubMedGoogle Scholar
  20. 20.
    Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39(8):971–974CrossRefGoogle Scholar
  21. 21.
    Barker SBS, Summerson WH (1941) The colorimetric determination of lactic acid in biological material. J Biol Chem 138:535–554Google Scholar
  22. 22.
    Wang DS, Zhang RY, Zhu WY, Mao SY (2013) Effects of subacute ruminal acidosis challenges on fermentation and biogenic amines in the rumen of dairy cows. Livest Sci 155(2–3):262–272CrossRefGoogle Scholar
  23. 23.
    Liu J, Zhang M, Zhang R, Zhu W, Mao S (2016) Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microb Biotechnol 9(2):257–268CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461CrossRefPubMedGoogle Scholar
  27. 27.
    Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266–267CrossRefPubMedGoogle Scholar
  28. 28.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mao SY, Zhang G, Zhu WY (2008) Effect of disodium fumarate on ruminal metabolism and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. Anim Feed Sci Technol 140(3–4):293–306CrossRefGoogle Scholar
  32. 32.
    Asanuma N, Iwamoto M, Hino T (1999) Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci 82(4):780–787CrossRefPubMedGoogle Scholar
  33. 33.
    Lopez S, Valdes C, Newbold CJ, Wallace RJ (1999) Influence of sodium fumarate addition on rumen fermentation in vitro. Br J Nutr 81(1):59–64PubMedGoogle Scholar
  34. 34.
    Nisbet DJ, Martin SA (1990) Effect of dicarboxylic acids and Aspergillus oryzae Fermentation extract on lactate uptake by the ruminal bacterium Selenomonas ruminantium. Appl Environ Microbiol 56(11):3515PubMedPubMedCentralGoogle Scholar
  35. 35.
    Nisbet DJ, Martin SA (1993) Effects of fumarate, l-malate, and an Aspergillus oryzae fermentation extract on d-Lactate utilization by the ruminal bacterium Selenomonas ruminantium. Curr Microbiol 26:133–136CrossRefGoogle Scholar
  36. 36.
    Khafipour E, Krause DO, Plaizier JC (2009) A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci 92(3):1060–1070CrossRefPubMedGoogle Scholar
  37. 37.
    Herlemann DPR, Geissinger O, Ikeda-Ohtsubo W, Kunin V, Sun H, Lapidus A, Hugenholtz P, Brune A (2009) Genomic analysis of “Elusimicrobium minutum”, the first cultivated representative of the phylum “Elusimicrobia” (formerly termite group 1). Appl Environ Microbiol 75(9):2841–2849CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zheng H, Dietrich C, Radek R, Brune A (2016) Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia)—an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ Microbiol 18(1):191–204CrossRefPubMedGoogle Scholar
  39. 39.
    Bailey SR, Baillon ML, Rycroft AN, Harris PA, Elliott J (2003) Identification of equine cecal bacteria producing amines in an in vitro model of carbohydrate overload. Appl Environ Microbiol 69:2087–2093CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    O’Herrin SM, Kenealy WR (1993) Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens. Appl Environ Microbiol 59(3):748–755PubMedPubMedCentralGoogle Scholar
  41. 41.
    Mao S, Zhang M, Liu J, Zhu W (2015) Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci Rep UK 5:16116CrossRefGoogle Scholar
  42. 42.
    Stanton TB (1984) Glucose metabolism of Treponema bryantii, an anaerobic rumen spirochete. Can J Microbiol 30(5):526–531CrossRefPubMedGoogle Scholar
  43. 43.
    Anderson KL (1995) Biochemical analysis of starch degradation by Ruminobacter amylophilus 70. Appl Environ Microbiol 61(4):1488–1491PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Wei Jin
    • 1
  • Chunxu Xue
    • 1
  • Junhua Liu
    • 1
  • Yuyang Yin
    • 1
  • Weiyun Zhu
    • 1
  • Shengyong Mao
    • 1
  1. 1.Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina

Personalised recommendations