Skip to main content
Log in

Classification of Culturable Bifidobacterial Population from Colonic Samples of Wild Pigs (Sus scrofa) Based on Three Molecular Genetic Methods

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Occurrence of bifidobacteria, known as health-promoting probiotic microorganisms, in the digestive tract of wild pigs (Sus scrofa) has not been examined yet. One hundred forty-nine fructose-6-phosphate phosphoketolase positive bacterial strains were isolated from colonic content of twenty-two individuals of wild pigs originated from four localities in the Czechia. Based on PCR-DGGE technique targeting the variable V3 region of the 16S rRNA genes, strains were initially differentiated into four groups represented by: (i) probably a new Bifidobacterium species (89 strains), (ii) B. boum/B. thermophilum/B. thermacidophilum subsp. porcinum/B. thermacidophilum subsp. thermacidophilum (sub)species (49 strains), (iii) Pseudoscardovia suis (7 strains), and (iv) B. pseudolongum subsp. globosum/B. pseudolongum subsp. pseudolongum (4 strains), respectively. Given the fact that DGGE technique did not allow to differentiate the representatives of thermophilic bifidobacteria and B. pseudolongum subspecies, strains were further classified by the 16S rRNA and thrS gene sequences. Primers targeting the variable regions of the latter gene were designed to be applicable in identification and phylogeny of Bifidobacteriaceae family. The 16S rRNA-derived phylogenetic study classified members of the first group into five subgroups in a separated cluster of thermophilic bifidobacteria. Comparable results were obtained by the thrS-derived phylogenetic analysis. Remarkably, variability among thrS sequences was higher compared with 16S rRNA gene sequences. Overall, molecular genetic techniques application allowed to identify a new Bifidobacterium phylotype which is predominant in the digestive tract of examined wild pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Biavati B, Vescovo M, Torriani S, Bottazzi V (2000) Bifidobacteria: history, ecology, physiology and applications. Ann Microbiol 50:117–131

    Google Scholar 

  2. Bunesova V, Killer J, Javurkova B, Vlkova E, Tejnecky V, Musilova S, Rada V (2017) Diversity of the subspecies Bifidobacterium animalis subsp. lactis. Anaerobe 44:40–47

    Article  CAS  PubMed  Google Scholar 

  3. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  4. Crociani F, Alessandrini A, Mucci MM, Biavati B (1994) Degradation of complex carbohydrates by Bifidobacterium spp. Int J Food Microbiol 24:199–210

    Article  CAS  PubMed  Google Scholar 

  5. Delorme C, Poyart C, Ehrlich SD, Renault P (2007) Extent of horizontal gene transfer in evolution of Streptococci of the salivarius group. J Bacteriol 189:1330–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Endo A, Futagawa-Endo Y, Schumann P, Pukall R, Dicks LM (2012) Bifidobacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacterium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifidobacterium biavatii sp. nov., isolated from faeces of common marmoset (Callithrix jacchus) and red-handed tamarin (Saguinus midas). Syst Appl Microbiol 35:92–97

    Article  CAS  PubMed  Google Scholar 

  7. Gavini F, Delcenserie V, Kopeinig K, Pollinger S, Beerens H, Bonaparte C, Upmann M (2006) Bifidobacterium species isolated from animal feces and from beef and pork meat. J Food Prot 69:871–877

    Article  CAS  PubMed  Google Scholar 

  8. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  9. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67

    Article  CAS  PubMed  Google Scholar 

  10. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21:8787–8803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jans C, de Wouters T, Bonfoh B, Lacroix C, Kaindi DW, Anderegg J, Böck D, Vitali S, Schmid T, Isenring J, Kurt F, Kogi-Makau W, Meile L (2016) Phylogenetic, epidemiological and functional analyses of the Streptococcus bovis/Streptococcus equinus complex through an overarching MLST scheme. BMC Microbiol 16:117

    Article  PubMed  PubMed Central  Google Scholar 

  12. Killer J, Kopečný J, Mrázek J, Rada V, Dubná S, Marounek M (2010) Bifidobacteria in the digestive tract of bumblebees. Anaerobe 16:165–170

    Article  CAS  PubMed  Google Scholar 

  13. Killer J, Mrázek J, Bunešová V, Havlík J, Koppová I, Benada O, Rada V, Kopečný J, Vlková E (2013) Pseudoscardovia suis gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of wild pigs (Sus scrofa). Syst Appl Microbiol 36:11–16

    Article  CAS  PubMed  Google Scholar 

  14. Killer J, Ročková Š, Vlková E, Rada V, Havlík J, Kopečný J, Bunesová V, Benada O, Kofronová O, Pechar R, Profousová I (2013) Alloscardovia macacae sp. nov., isolated from the milk of a macaque (Macaca mulatta), emended description of the genus Alloscardovia and proposal of Alloscardovia criceti comb. nov. Int J Syst Evol Microbiol 63:4439–4446

    Article  CAS  PubMed  Google Scholar 

  15. Killer J, Havlik J, Bunesova V, Vlkova E, Benada O (2014) Pseudoscardovia radai sp. nov., another representative of a new genus within the family Bifidobacteriaceae isolated from the digestive tract of a wild pig (Sus scrofa scrofa). Int J Syst Evol Microbiol 64:2932–2938

    Article  CAS  PubMed  Google Scholar 

  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  17. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  CAS  PubMed  Google Scholar 

  18. Lamendella R, Santo Domingo JW, Kelty C, Oerther DB (2008) Bifidobacteria in feces and environmental waters. Appl Environ Microbiol 74:575–584

    Article  CAS  PubMed  Google Scholar 

  19. Maxwell FJ, Duncan SH, Hold G, Stewart CS (2004) Isolation, growth on prebiotics and probiotic potential of novel bifidobacteria from pigs. Anaerobe 10:33–39

    Article  CAS  PubMed  Google Scholar 

  20. Mikkelsen LL, Bendixen C, Jakobsen M, Jensen BB (2003) Enumeration of bifidobacteria in gastrointestinal samples from piglets. Appl Environ Microbiol 69:654–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ekology. Antonie Van Leeuwenhoek 73:127–141

    Article  CAS  PubMed  Google Scholar 

  22. Ochman H, Worobey M, Kuo CH, Ndjango JB, Peeters M, Hahn BH, Hugenholtz P (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 8(11):e1000546

    Article  PubMed  PubMed Central  Google Scholar 

  23. Orban JI, Patterson JA (2000) Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J Microbiol Methods 40:221–224

    Article  CAS  PubMed  Google Scholar 

  24. Rada V, Petr J (2000) A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J Microbiol Methods 43:127–132

    Article  CAS  PubMed  Google Scholar 

  25. Rada V, Petr J (2002) Enumeration of bifidobacteria in animal intestinal samples. Vet Med Czech 47:1–4

    Google Scholar 

  26. Scardovi V, Trovatelli LD, Biavati B, Zani G (1979) Bifidobacterium cuniculi, Bifidobacterium choerinum, Bifidobacterium boum, and Bifidobacterium pseudocatenulatum: four new species and their deoxyribonucleic acid homology relationships. Int J Syst Bacteriol 29:291–311

    Article  Google Scholar 

  27. Shkoporov AN, Khokhlova EV, Kulagina EV, Smeianov VV, Kafarskaia LI, Efimov BA (2008) Application of several molecular techniques to study numerically predominant Bifidobacterium spp. and Bacteroidales order strains in the feces of healthy children. Biosci Biotechnol Biochem 72:742–748

    Article  CAS  PubMed  Google Scholar 

  28. Silvi S, Verdenelli MC, Orpianesi C, Cresci A (2003) EU project Crownalife: functional foods, gut microflora and healthy ageing. Isolation and identification of Lactobacillus and Bifidobacterium strains from faecal samples of elderly subjects for a possible probiotic use in functional foods. J Food Eng 56:195–200

    Article  Google Scholar 

  29. Simpson JM, McCracken VJ, Gaskins HR, Mackie RI (2000) Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Appl Environ Microbiol 66:4705–4714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simpson PJ, Stanton C, Fitzgerald GF, Ross RP (2003) Genomic diversity and relatedness of bifidobacteria isolated from a porcine cecum. J Bacteriol 185:2571–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Simpson PJ, Ross RP, Fitzgerald GF, Stanton C (2004) Bifidobacterium psychraerophilum sp. nov. and Aeriscardovia aeriphila gen. nov., sp. nov., isolated from a porcine caecum. Int J Syst Evol Microbiol 54:401–406

    Article  CAS  PubMed  Google Scholar 

  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trebichavsky I, Rada V, Splichalova A, Splichal I (2009) Cross-talk of human gut with bifidobacteria. Nutr Rev 67:77–82

    Article  PubMed  Google Scholar 

  34. Vlková E, Trojanová I, Rada V (2006) Distribution of bifidobacteria in the gastrointestinal tract of calves. Folia Microbiol 51:325–328

    Article  Google Scholar 

  35. von Ah U, Mozzetti V, Lacroix C, Kheadr EE, Fliss I, Meile L (2007) Classification of a moderately oxygen-tolerant isolate from baby faeces as Bifidobacterium thermophilum. BMC Microbiol 7:79

    Article  Google Scholar 

  36. Walker AW, Martin JC, Scott P, Parkhill J, Flint HJ, Scott KP (2015) 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yanokura E, Oki K, Makino H, Modesto M, Pot B, Mattarelli P, Biavati B, Watanabe K (2015) Subspeciation of Bifidobacterium longum by multilocus approaches and amplified fragment length polymorphism: description of B. longum subsp. suillum subsp. nov., isolated from the faeces of piglets. Syst Appl Microbiol 38:305–314

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Kong Y, Feng Y, Huang J, Song T, Ruan Z, Song J, Jiang Y, Yu Y, Xie X (2014) Development of a multilocus sequence typing scheme for Ureaplasma. Eur J Clin Microbiol Infect Dis 33:537–544

    Article  CAS  PubMed  Google Scholar 

  39. Zhu L, Li W, Dong X (2003) Species identification of genus Bifidobacterium based on partial HSP60 gene sequences and proposal of Bifidobacterium thermacidophilum subsp. porcinum subsp. nov. Int J Syst Evol Microbiol 53:1619–1623

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the by the Grant Agency of the Czech Republic (Project No. GA13-08803S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Killer.

Ethics declarations

Conflicts of interest

The authors declare that they have no potential conflict of interest related to this study.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in the study involving animals were in accordance with the ethical standards of the institution or practice at which the study was conducted.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pechar, R., Killer, J., Mekadim, C. et al. Classification of Culturable Bifidobacterial Population from Colonic Samples of Wild Pigs (Sus scrofa) Based on Three Molecular Genetic Methods. Curr Microbiol 74, 1324–1331 (2017). https://doi.org/10.1007/s00284-017-1320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1320-0

Navigation