Abstract
Pan-genome refers to the sum of genes that can be found in a given bacterial species, including the core-genome and the dispensable genome. In this study, the genomes from 183 Streptococcus mutans (S. mutans) isolates were analyzed from the pan-genome perspective. This analysis revealed that S. mutans has an “open” pan-genome, implying that there are plenty of new genes to be found as more genomes are sequenced. Additionally, S. mutans has a limited core-genome, which is composed of genes related to vital activities within the bacterium, such as metabolism and hereditary information storage or processing, occupying 35.6 and 26.6% of the core genes, respectively. We estimate the theoretical core-genome size to be about 1083 genes, which are fewer than other Streptococcus species. In addition, core genes suffer larger selection pressures in comparison to those that are less widely distributed. Not surprisingly, the distribution of putative virulence genes in S. mutans strains does not correlate with caries status, indicating that other factors are also responsible for cariogenesis. These results contribute to a more understanding of the evolutionary characteristics and dynamic changes within the genome components of the species. This also helps to form a new theoretical foundation for preventing dental caries. Furthermore, this study sets an example for analyzing large genomic datasets of pathogens from the pan-genome perspective.



References
Aikawa C, Furukawa N, Watanabe T et al (2012) Complete genome sequence of the serotype k Streptococcus mutans strain LJ23. J Bacteriol 194:2754–2755. doi:10.1128/JB.00350-12
Ajdić D, McShan WM, McLaughlin RE et al (2002) Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci USA 99:14434–14439. doi:10.1073/pnas.172501299
Alm E, Huang K, Arkin A (2006) The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. PLoS Comput Biol 2:e143. doi:10.1371/journal.pcbi.0020143
Argimón S, Caufield PW (2011) Distribution of putative virulence genes in Streptococcus mutans strains does not correlate with caries experience. J Clin Microbiol 49:984–992. doi:10.1128/JCM.01993-10
Argimón S, Konganti K, Chen H et al (2014) Comparative genomics of oral isolates of Streptococcus mutans by in silico genome subtraction does not reveal accessory DNA associated with severe early childhood caries. Infect Genet Evol 21:269–278. doi:10.1016/j.meegid.2013.11.003
Arthur RA, Cury AADB, Graner ROM et al (2011) Genotypic and phenotypic analysis of S. mutans isolated from dental biofilms formed in vivo under high cariogenic conditions. Braz Dent J 22:267–274
Bender GR, Sutton SV, Marquis RE (1986) Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun 53:331–338
Biswas S, Biswas I (2012) Complete genome sequence of Streptococcus mutans GS-5, a serotype c strain. J Bacteriol 194:4787–4788. doi:10.1128/JB.01106-12
Bowen WH, Schilling K, Giertsen E et al (1991) Role of a cell surface-associated protein in adherence and dental caries. Infect Immun 59:4606–4609
Boyd DA, Cvitkovitch DG, Bleiweis AS et al (2000) Defects in D-alanyl-lipoteichoic acid synthesis in Streptococcus mutans results in acid sensitivity. J Bacteriol 182:6055–6065
Burne RA (1998) Oral streptococci. products of their environment. J Dent Res 77:445. doi:10.1177/00220345980770030301
Burne RA, Chen YY, Wexler DL et al (1996) Cariogenicity of Streptococcus mutans strains with defects in fructan metabolism assessed in a program-fed specific-pathogen-free rat model. J Dent Res 75:1572–1577. doi:10.1177/00220345960750080801
Cheon K, Moser SA, Whiddon J et al (2011) Genetic diversity of plaque mutans streptococci with rep-PCR. J Dent Res 90:331–335. doi:10.1177/0022034510386375
Conrads G, de Soet JJ, Song L et al (2014) Comparing the cariogenic species Streptococcus sobrinus and S. mutans on whole genome level. J Oral Microbiol 6:26189. doi:10.3402/jom.v6.26189
Cornejo OE, Lefébure T, Bitar PDP et al (2013) Evolutionary and population genomics of the cavity causing bacteria Streptococcus mutans. Mol Biol Evol 30:881–893. doi:10.1093/molbev/mss278
Delcher AL, Bratke KA, Powers EC et al (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679. doi:10.1093/bioinformatics/btm009
Deng W, Wang Y, Liu Z et al (2014) HemI: a toolkit for illustrating heatmaps. PLoS ONE 9:e111988. doi:10.1371/journal.pone.0111988
Dintilhac A, Claverys JP (1997) The adc locus, which affects competence for genetic transformation in Streptococcus pneumoniae, encodes an ABC transporter with a putative lipoprotein homologous to a family of streptococcal adhesins. Res Microbiol 148:119–131. doi:10.1016/S0923-2508(97)87643-7
Dunning DW, McCall LW, Powell WF et al (2008) SloR modulation of the Streptococcus mutans acid tolerance response involves the GcrR response regulator as an essential intermediary. Microbiology 154:1132–1143. doi:10.1099/mic.0.2007/012492-0
Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30:1575–1584
Fan MW, Bian Z, Peng ZX et al (2002) A DNA vaccine encoding a cell-surface protein antigen of Streptococcus mutans protects gnotobiotic rats from caries. J Dent Res 81:784. doi:10.1177/0810784
Fischer S, Brunk BP, Chen F et al (2011) Using OrthoMCL to assign proteins to OrthoMCL‐DB groups or to cluster proteomes into new Ortholog groups. Curr Protoc Bioinform 35:6.12.1–6.12.19. doi:10.1002/0471250953.bi0612s35
Fraser-Liggett CM (2005) Insights on biology and evolution from microbial genome sequencing. Genome Res 15:1603–1610. doi:10.1101/gr.3724205
Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687. doi:10.1038/nrmicro1204
Gutierrez JA, Crowley PJ, Cvitkovitch DG et al (1999) Streptococcus mutans ffh, a gene encoding a homologue of the 54 kDa subunit of the signal recognition particle, is involved in resistance to acid stress. Microbiology 145:357–366. doi:10.1099/13500872-145-2-357
Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of streptococcus mutans. Microbiol Rev 44:331
Hale JD, Ting YT, Jack RW et al (2005) Bacteriocin (mutacin) production by Streptococcus mutans genome sequence reference strain UA159: elucidation of the antimicrobial repertoire by genetic dissection. Appl Environ Microbiol 71:7613. doi:10.1128/AEM.71.11.7613-7617.2005
Harper DS, Loesche WJ (1984) Growth and acid tolerance of human dental plaque bacteria. Arch Oral Biol 29:843–848
Heaps HS (1978) Information retrieval: computational and theoretical aspects. Academic Press, New York
Hiller NL, Janto B, Hogg JS et al (2007) Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. J Bacteriol 189:8186–8195. doi:10.1128/JB.00690-07
Hogg JS, Hu FZ, Janto B et al (2007) Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol 8:R103. doi:10.1186/gb-2007-8-6-r103
Hossain MS, Biswas I (2012) An extracelluar protease, SepM, generates functional competence-stimulating peptide in Streptococcus mutans UA159. J Bacteriol 194:5886–5896. doi:10.1128/JB.01381-12
Kreikemeyer B, McIver KS, Podbielski A (2003) Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends Microbiol 11:224–232
Krishnan K, Chen T, Paster BJ (2016) A practical guide to the oral microbiome and its relation to health and disease. Oral Dis 23:276. doi:10.1111/odi.12509
Kryazhimskiy S, Plotkin JB (2008) The population genetics of dN/dS. PLoS Genet 4:e1000304. doi:10.1371/journal.pgen.1000304
Lagesen K, Hallin P, Rødland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. doi:10.1093/nar/gkm160
Lefébure T, Stanhope MJ (2007) Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol 8:R71. doi:10.1186/gb-2007-8-5-r71
Lemos JA, Luzardo Y, Burne RA (2007) Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans. J Bacteriol 189:1582–1588. doi:10.1128/JB.01655-06
Liao Y, Chen J, Brandt BW et al (2015) Identification and functional analysis of genome mutations in a fluoride-resistant Streptococcus mutans strain. PLoS ONE 10:e0122630. doi:10.1371/journal.pone.0122630
Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380
Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964
Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18. doi:10.1186/2047-217X-1-18
Marri PR, Hao W, Golding GB (2006) Gene gain and gene loss in streptococcus: is it driven by habitat? Mol Biol Evol 23:2379–2391. doi:10.1093/molbev/msl115
Martinez-Medina M, Aldeguer X, Lopez-Siles M et al (2009) Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn’s disease. Inflamm Bowel Dis 15:872–882. doi:10.1002/ibd.20860
Maruyama F, Kobata M, Kurokawa K et al (2009) Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content. BMC Genom 10:358. doi:10.1186/1471-2164-10-358
Mattos-Graner RO, Napimoga MH, Fukushima K et al (2004) Comparative analysis of Gtf isozyme production and diversity in isolates of Streptococcus mutans with different biofilm growth phenotypes. J Clin Microbiol 42:4586–4592. doi:10.1128/JCM.42.10.4586-4592.2004
Minah GE, Loesche WJ (1977) Sucrose metabolism by prominent members of the flora isolated from cariogenic and non-cariogenic dental plaques. Infect Immun 17:55–61
Moreno-Hagelsieb G, Latimer K (2008) Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24:319–324. doi:10.1093/bioinformatics/btm585
Morrison DA (1997) Streptococcal competence for genetic transformation: regulation by peptide pheromones. Microb Drug Resist 3:27. doi:10.1089/mdr.1997.3.27
Muzzi A, Donati C (2011) Population genetics and evolution of the pan-genome of Streptococcus pneumoniae. Int J Med Microbiol 301:619–622. doi:10.1016/j.ijmm.2011.09.008
Nakano K, Nomura R, Matsumoto M et al (2010) Roles of oral bacteria in cardiovascular diseases—from molecular mechanisms to clinical cases: cell-surface structures of novel serotype k Streptococcus mutans strains and their correlation to virulence. J Pharmacol Sci 113:120–125
Nomura R, Nakano K, Taniguchi N et al (2009) Molecular and clinical analyses of the gene encoding the collagen-binding adhesin of Streptococcus mutans. J Med Microbiol 58:469–475. doi:10.1099/jmm.0.007559-0
Ooshima T, Matsumura M, Hoshino T et al (2001) Contributions of three glucosyltransferases to sucrose-dependent adherence of Streptococcus mutans. J Dent Res 80:1672–1677. doi:10.1177/00220345010800071401
Phattarataratip E, Olson B, Broffitt B et al (2011) Streptococcus mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host antimicrobial peptides. Mol Oral Microbiol 26:187–199. doi:10.1111/j.2041-1014.2011.00607.x
Russell MW, Harrington DJ, Russell RR (1995) Identity of Streptococcus mutans surface protein antigen III and wall-associated protein antigen A. Infect Immun 63:733–735
Song L, Sudhakar P, Wei W et al (2012) A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains. BMC Genom 13:128. doi:10.1186/1471-2164-13-128
Song L, Wang W, Conrads G et al (2013) Genetic variability of mutans streptococci revealed by wide whole-genome sequencing. BMC Genom 14:430. doi:10.1186/1471-2164-14-430
Spatafora G, Rohrer K, Barnard D et al (1995) A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo. Infect Immun 63:2556–2563
Staat RH, Langley SD, Doyle RJ (1980) Streptococcus mutans adherence: presumptive evidence for protein-mediated attachment followed by glucan-dependent cellular accumulation. Infect Immun 27:675–681
Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215. doi:10.1146/annurev.biochem.69.1.183
Tamesada M, Kawabata S, Fujiwara T et al (2004) Synergistic effects of streptococcal glucosyltransferases on adhesive biofilm formation. J Dent Res 83:874–879. doi:10.1177/154405910408301110
Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955. doi:10.1073/pnas.0506758102
Tettelin H, Riley D, Cattuto C et al (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477
Valdez RM, Dos Santos VR, Caiaffa KS et al (2016) Comparative in vitro investigation of the cariogenic potential of bifidobacteria. Arch Oral Biol 71:97. doi:10.1016/j.archoralbio.2016.07.005
Van HJ (1994) Role of micro-organisms in caries etiology. J Dent Res 73:672. doi:10.1177/00220345940730031301
Waterhouse JC, Russell RR (2006) Dispensable genes and foreign DNA in Streptococcus mutans. Microbiology 152:1777–1788. doi:10.1099/mic.0.28647-0
Waterhouse JC, Swan DC, Russell RRB (2007) Comparative genome hybridization of Streptococcus mutans strains. Oral Microbiol Immunol 22:103–110. doi:10.1111/j.1399-302X.2007.00330.x
Wu C, Cichewicz R, Li Y et al (2010) Genomic island TnSmu2 of Streptococcus mutans harbors a nonribosomal peptide synthetase-polyketide synthase gene cluster responsible for the biosynthesis of pigments involved in oxygen and H2O2 tolerance. Appl Environ Microbiol 76:5815–5826. doi:10.1128/AEM.03079-09
Yamashita Y, Bowen WH, Kuramitsu HK (1992) Molecular analysis of a Streptococcus mutans strain exhibiting polymorphism in the tandem gtfB and gtfC genes. Infect Immun 60:1618–1624
Yamashita Y, Bowen WH, Burne RA et al (1993) Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun 61:3811–3817
Zhang L, Foxman B, Drake DR et al (2009) Comparative whole-genome analysis of Streptococcus mutans isolates within and among individuals of different caries status. Oral Microbiol Immunol 24:197–203. doi:10.1111/j.1399-302X.2008.00495.x
Acknowledgements
This study was supported by funding from Peking University School of Stomatology (PKUSS20130210).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
None.
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Meng, P., Lu, C., Zhang, Q. et al. Exploring the Genomic Diversity and Cariogenic Differences of Streptococcus mutans Strains Through Pan-Genome and Comparative Genome Analysis. Curr Microbiol 74, 1200–1209 (2017). https://doi.org/10.1007/s00284-017-1305-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00284-017-1305-z