Skip to main content

Advertisement

Log in

Antibacterial and Antioxidant Constituents of Extracts of Endophytic Fungi Isolated from Ocimum basilicum var. thyrsiflora Leaves

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Fourteen fungal endophytes were isolated from the Ocimum basilicum var. thyrsiflora leaves collected from Northern Thailand. Eight genera were identified including Aspergillus, Ascochyta, Nigrospora, Blastomyces, Colletotrichum, Exidia, Clitopilus, and Nomuraea. The antibacterial activity of crude extracts from all endophytic fungi was tested against nine human bacterial pathogens: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Vibrio cholerae, and Vibrio parahaemolyticus. All crude extracts showed some degree of antibacterial activity, but the crude extract from Nigrospora MFLUCC16-0605 exhibited broad spectrum activity with MIC values ranging from 7.81 to 250 µg/mL. The antioxidant activity of all crude extracts was also investigated by DPPH radical scavenging assay. Crude extract from MFLUCC16-0605 had high antioxidant activity (IC50 value of 15.36 μg/mL) comparable to the trolox and gallic acid standards showing IC50 values of 2.56 and 12.89 μg/mL, respectively. The chemical composition of the crude extract from MFLUCC16-0605 was determined using GC–MS. Sixty-two compounds were identified representing 92.09% of crude extract with six major components including 5E,9E-farnesyl acetone, columellarin, totarene, laurenan-2-one, and 8S,13-cedranediol. PCR amplification and sequencing of the barcoding region identified MFLUCC16-0605 as belonging to Nigrospora genus. The notable activities of MFLUCC16-0605 indicate that the endophyte is a potent natural resource and its use as an antibacterial/antioxidant agent should be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekke Inc., New York

    Google Scholar 

  2. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268. doi:10.1021/np030397v

    Article  CAS  PubMed  Google Scholar 

  3. Wedge DE, Klun JA, Tabanca N, Demirci B, Ozek T, Baser KHC, LiuZ Zhang S, Cantrell CL, Zhang J (2009) Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. J Agric Food Chem 57:464–470. doi:10.1021/jf802820d

    Article  CAS  PubMed  Google Scholar 

  4. Murali TS, Suryanarayanan TS, Venkatesan G (2007) Fungal endophyte communities in two tropical forests of southern India: diversity and host affiliation. Mycol Prog 6:191–199. doi:10.1007/s11557-007-0540-2

    Article  Google Scholar 

  5. Carmen GC, ElisabettaS Antonio VC, Jesús MB (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol 5:1–14. doi:10.3389/fmicb.2014.00427

    Google Scholar 

  6. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343. doi:10.1146/annurev.ecolsys.29.1.319

    Article  Google Scholar 

  7. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581. doi:10.1126/science.1078055

    Article  CAS  PubMed  Google Scholar 

  8. He RL, Wang GP, Liu ZH, Zhang CL, Lin FC (2009) Antagonistic bioactivity of an endophytic bacterium isolated from Epimedium brevicornu Maxim. Afr J Biotechnol 8:191–195

    CAS  Google Scholar 

  9. Xu L, Zhou L, Zhao J, Jiang W (2008) Recent studies on the antimicrobial compounds produced by plant endophytic fungi. Nat Prod Res Dev 20:731–740

    CAS  Google Scholar 

  10. Senadeera SPD, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2012) A novel tricyclic polyketide and its biosynthetic precursor azaphilone derivatives from the endophytic fungus Dothideomycete sp. Org Biomol Chem 10:7220–7226. doi:10.1039/C2OB25959A

    Article  CAS  PubMed  Google Scholar 

  11. Wibowo M, Prachyawarakorn V, Aree T, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P (2014) Tricyclic and spirobicyclic norsesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola. Eur J Org Chem 19:3976–3980. doi:10.1002/ejoc.201402262

    Article  Google Scholar 

  12. Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61:729–739. doi:10.1007/s00248-011-9818-7

    Article  PubMed  Google Scholar 

  13. Sánchez-Fernández RE, Diaz D, Duarte G, Lappe-Oliveras P, Sánchez S, Macías-Rubalcava ML (2016) Antifungal volatile organic compounds from the endophyte Nodulisporium sp. strain GS4d2II1a: a qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum. Microb Ecol 71:347–364. doi:10.1007/s00248-015-0679-3

    Article  PubMed  Google Scholar 

  14. Yang Q, Wu J, Luo Y, Huang N, Zhen N, Zhou Y, Sun F, Li Z, Pan Q, Li Y (2016) (−)-Guaiol regulates RAD51 stability via autophagy to induce cell apoptosis in non-small cell lung cancer. Oncotarget 7:62585–62597. doi:10.18632/oncotarget.11540

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tomsheck AR, Strobel GA, Booth E, Geary B, Spakowicz D, Knighton B, Floerchinger C, Sears J, Liarzi O, Ezra D (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60:903–914. doi:10.1007/s00248-010-9759-6

    Article  CAS  PubMed  Google Scholar 

  16. Bauer K, Garbe D, Surburg H (1997) Common fragrance and flavor materials, 3rd edn. WileyVCH, Weinheim, p 171

    Book  Google Scholar 

  17. Evans WC (1996) Trease and Evans’ pharmacognosy. WB Saunders Company, London, p 48

    Google Scholar 

  18. Chiej R (1988) The Macdonald encyclopedia of medicinal plants. Macdonald and Co (Publishers) Ltd, London, p 207

    Google Scholar 

  19. Duke JA (1989) CRC handbook of medicinal herbs. CRC Press, Boca Raton, p 333

    Google Scholar 

  20. Pripdeevech P, Chumpolsri W, Suttiarporn P, Wongpornchai S (2010) The chemical composition and antioxidant activities of basil from Thailand using retention indices and comprehensive two-dimensional gas chromatography. J Serb Chem Soc 75:1503–1513. doi:10.2298/JSC100203125P

    Article  CAS  Google Scholar 

  21. Baratta MT, Dorman HJD, Deans SG, Figueiredo AC, Barroso JG, Ruberto G (1998) Antimicrobial and antioxidant properties of some commercial essential oil. Flavour Fragr J 13:235–244. doi:10.1002/(SICI)1099-1026(1998070)13:4<235:AID-FFJ733>3.0.CO;2-T

    Article  CAS  Google Scholar 

  22. Simon JE, Morales MR, Phippen WB, Vieira RF, Hao Z (1999) Perspectives on new crops and new uses. In: Janick J (ed). ASHS Press, Alexandria, p 499

  23. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Nigrospora subgenus. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–174

    Google Scholar 

  24. Mar A, Pripdeevech P (2014) Chemical composition and antibacterial activity of essential oil and extracts of Citharexylum spinosum flowers from Thailand. Nat Prod Commun 9:707–710

    CAS  PubMed  Google Scholar 

  25. Pripdeevech P, Machan T (2011) Fingerprint of volatile flavour constituents and antioxidant activities of teas from Thailand. Food Chem 125:797–802. doi:10.1016/j.foodchem.2010.09.074

    Article  CAS  Google Scholar 

  26. Vega FE, Posada F, Peterson SW, Gianfagna TJ, Chaves F (2006) Nigrospora species endophytic in coffee plants and ochratoxin A production. Mycologia 98:31–42. doi:10.3852/mycologia.98.1.31

    Article  CAS  PubMed  Google Scholar 

  27. Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW, Perrone G, Seifert KA, Varga J, Yaguchi T, Samson RA (2014) Identification and nomenclature of the genus Nigrospora. Stud Mycol 78:343–371. doi:10.1016/j.simyco.2014.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peterson SW (2000) Phylogenetic analysis of Nigrospora species based on ITS and LSU-rDNA nucleotide sequences. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Nigrospora and Aspergillus classification. Harwood Academic Publishers, Amsterdam, pp 163–178

    Google Scholar 

  29. Houbraken J, Samson RA (2011) Phylogeny of Nigrospora and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51. doi:10.3114/sim.2011.70.01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Katoh K, Misawa K, Kuma KI, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900. doi:10.1093/bioinformatics/btq224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2008) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi:10.1093/bioinformatics/btp348

    Article  Google Scholar 

  33. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  34. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  35. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), New Orleans, pp 1–8

  36. Yadav M, Yadav A, Yadav JP (2014) In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac J Trop Med 7:S256–S261. doi:10.1016/S1995-7645(14)60242-X

    Article  Google Scholar 

  37. Cakir A, Kordali S, Zengin H, Izumi S, Hirata T (2004) Composition and antifungal activity of essential oils isolated from Hypericum hyssopifolium and Hypericum heterophyllum. Flavour Fragr J 19:62–68. doi:10.1002/ffj.1279

    Article  CAS  Google Scholar 

  38. Gudzic B, Djokovic D, Vajs V, Palic R, Stojanovic G (2002) Composition and antimicrobial activity of the essential oil of Hypericum maculatum Crantz. Flavour Frag J 17:392–394. doi:10.1002/ffj.1112

    Article  CAS  Google Scholar 

  39. Zengin H, Baysal AH (2014) Antibacterial and antioxidant activity of essential oil terpenes against Pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 19:17773–17798. doi:10.3390/molecules191117773

    Article  PubMed  Google Scholar 

  40. Kuzuyama T (2017) Biosynthetic studies on terpenoids produced by Streptomyces. J Antibiot (Tokyo) 70:1–8. doi:10.1038/ja.2017.12

    Article  Google Scholar 

  41. Demain AL, Martens E (2016) Production of valuable compounds by molds and yeasts. J Antibiot (Tokyo) 70:347–360. doi:10.1038/ja.2016.121

    Article  Google Scholar 

  42. Ata A, Conci LJ, Betteridge J, Orhan I, Sener B (2007) Novel microbial transformations of sclareolide. Chem Pharm Bull (Tokyo) 55:118–123

    Article  CAS  Google Scholar 

  43. Misra LN, Vyry WNA, Kumar S, Kumar RV, Tchoumbougnang F (2013) Antibacterial, cytotoxic activities and chemical composition of fruits of two cameroonian Zanthoxylum species. J Ethnopharmacol 148:74–80. doi:10.1016/j.jep.2013.03.069

    Article  CAS  PubMed  Google Scholar 

  44. Tadić V, Bojović D, Arsić I, Đorđević S, Aksentijevic K, Stamenić M, Janković S (2012) Chemical and antimicrobial evaluation of supercritical and conventional Sideritis scardica Griseb., Lamiaceae extracts. Molecules 17:2683–2703. doi:10.3390/molecules17032683

    Article  PubMed  Google Scholar 

  45. Busi S, Ramakrishna G, Mandava VBR (2012) Biotransformation of (-)-α-santonin by Aspergillus parasiticus and antimicrobial efficacy of the transformed products. Curr Biotechnol 1:194–198

    Article  Google Scholar 

  46. Choudhary MI, Batool I, Atif M, Hussain S, Atta-Ur-Rahman (2007) Microbial transformation of (−)-guaiol and antibacterial activity of its transformed products. J Nat Prod 70:849–852. doi:10.1021/np068052a

    Article  CAS  PubMed  Google Scholar 

  47. Liu T, Wang CJ, Xie HQ, Mu Q (2013) Guaiol—a naturally occurring insecticidal sesquiterpene. Nat Prod Commun 8:1353–1354

    CAS  PubMed  Google Scholar 

  48. Hamdi OAA, Feroz SR, Shilpi JA, Anouar EH, Mukarram AK, Mohamad SB, Tayyab S, Awang K (2015) Spectrofluorometric and molecular docking studies on the binding of curcumenol and curcumenone to human serum albumin. Int J Mol Sci 16:5180–5193. doi:10.3390/ijms16035180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marino M, Bersani C, Comi G (2001) Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int J Food Microbiol 67:187–195. doi:10.1016/S0168-1605(01)00447-0

    Article  CAS  PubMed  Google Scholar 

  50. González-Burgos E, Gómez-Serranillos MP (2012) Terpene compounds in nature: a review of their potential antioxidant activity. Curr Med Chem 19:5319–5341. doi:10.2174/092986712803833335

    Article  PubMed  Google Scholar 

  51. Foti MC, Ingold KU (2003) Mechanism of inhibition of lipid peroxidation by γ-terpinene, an unusual and potentially useful hydrocarbon antioxidant. J Agric Food Chem 51:2758–2765. doi:10.1021/jf020993f

    Article  CAS  PubMed  Google Scholar 

  52. Shirazi MT, Gholami H, Kavoosi G, Rowshan V, Tafsiry A (2014) Chemical composition, antioxidant, antimicrobial and cytotoxic activities of Tagetes minuta and Ocimum basilicum essential oils. Food Sci Nutr 2:146–155. doi:10.1002/fsn3.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu GL, Geng D, Xie M, Teng KY, Tian YX, Liu ZZ, Yan C, Wang Y, Zhang X, Song Y, Yang Y, She GM (2015) Chemical composition, antioxidative and anticancer activities of the essential oil: curcumae rhizomaSparganii rhizoma, a traditional herb pair. Molecules 20:15781–15796. doi:10.3390/molecules200915781

    Article  CAS  PubMed  Google Scholar 

  54. Chowdhary K, Kaushik N (2015) Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS ONE 1–25:e0141444. doi:10.1371/journal.pone.0141444

    Article  Google Scholar 

  55. Gangadevi V, Muthumary J (2007) Endophytic fungal diversity from young, mature and senescent leaves of Ocimum basilicum L. with special reference to taxol production. Indian J Sci Technol 1:1–12

    Google Scholar 

  56. Tiwari R, Kalra A, Darokar MP, Chandra M, Aggarwal N, Singh AK, Khanuja SP (2009) Endophytic bacteria from Ocimum sanctum and their yield enhancing capabilities. Curr Microbiol 60:167–171. doi:10.1007/s00284-009-9520-x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Great appreciation is given to the Department of Medical Science, Ministry of Health, Bangkok, Thailand for giving of bacterial pathogens. Mae Fah Luang University is acknowledged for financial and instrument support. The authors wish to acknowledge the Institute of Excellence in Fungal Research, Mae Fah Luang University for collecting of isolated fungal endophytes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patcharee Pripdeevech.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atiphasaworn, P., Monggoot, S., Gentekaki, E. et al. Antibacterial and Antioxidant Constituents of Extracts of Endophytic Fungi Isolated from Ocimum basilicum var. thyrsiflora Leaves. Curr Microbiol 74, 1185–1193 (2017). https://doi.org/10.1007/s00284-017-1303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1303-1

Navigation