Skip to main content

Advertisement

Log in

New Identification of Three or More Campylobacter Species on the Basis of a Degenerate PCR–RFLP Method Targeting gyrB Gene

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This method was aimed targeting more Campylobacter species than conventional PCR-based identifications. They generally use species-specific primers focusing on clinically common species like C. jejuni, resulting in failure to recognize other species. We made the PCR-based identification more flexible using degenerate primers and DdeI- and MboI-separately used RFLP assay, which were designed on the basis of gyrB nucleotide sequence data of 14 Campylobacter species including C. jejuni, C. coli, and C. fetus. Ninety-four clinical isolates from patients with Campylobacter gastroenteritis and 13 biochemically identified C. fetus were used for its evaluation. In consequence, this method succeeded in identifying C. jejuni, C. coli, and C. fetus with tentative sensitivity (93.4–98.0%) and specificity (89.0–99.0%). According to our data-based analysis, the primers can possibly target other related species including Helicobacter and Arcobacter. This method may be a universal identification for Campylobacter and related organisms and would provide an alternative identification in clinical microbiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gilbert MJ, Kik M, Miller WG, Duim B, Wagenaar JA (2015) Campylobacter iguaniorum sp. nov., isolated from reptiles. Int J Syst Evol Microbiol 65:975–982. doi:10.1099/ijs.0.000048

    Article  PubMed  Google Scholar 

  2. Koziel M, O’Doherty P, Vandamme P, Corcoran GD, Sleator RD, Lucey B (2014) Campylobacter corcagiensis sp. nov., isolated from faeces of captive lion-tailed macaques (Macaca silenus). Int J Syst Evol Microbiol 64:2878–2883. doi:10.1099/ijs.0.063867-0

    Article  CAS  PubMed  Google Scholar 

  3. On SLW (2013) Isolation, identification and subtyping of Campylobacter: where to from here? J Microbiol Methods 95:3–7. doi:10.1016/j.mimet.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  4. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM (2015) Global epidemiology of campylobacter infection. Clin Microbiol Rev 28:687–720. doi:10.1128/CMR.00006-15

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martiny D, Dediste A, Debruyne L, Vlaes L, Haddou NB, Vandamme P, Vandenberg O (2011) Accuracy of the API Campy system, the Vitek 2 Neisseria-Haemophilus card and matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of Campylobacter and related organisms. Clin Microbiol Infect 17:1001–1006. doi:10.1111/j.1469-0691.2010.03328.x

    Article  CAS  PubMed  Google Scholar 

  6. Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gorkiewicz G, Feierl G, Schober C, Dieber F, Kofer J, Zechner R, Zechner EL (2003) Species-specific identification of campylobacters by partial 16S rRNA gene sequencing. J Clin Microbiol 41:2537–2546. doi:10.1128/JCM.41.6.2537-2546.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gunther NW IV, Almond J, Yan X, Needleman DS (2011) GyrB versus 16s rRna sequencing for the identification of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. J Nucleic Acids Invest 2:39–42. doi:10.4081/jnai.2011.e7

    Article  CAS  Google Scholar 

  9. Kawasaki S, Fratamico PM, Wesley IV, Kawamoto S (2008) Species-specific identification of campylobacters by PCR-restriction fragment length polymorphism and PCR targeting of the gyrase B gene. Appl Environ Microbiol 74:2529–2533. doi:10.1128/AEM.00975-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156. doi:10.1111/j.1472-765X.1989.tb00262.x

    Article  CAS  Google Scholar 

  11. Fujimoto S, Allos BM, Misawa N, Patton CM, Blaser MJ (1997) Restriction fragment length polymorphism analysis and random amplified polymorphic DNA analysis of campylobacter jejuni strains isolated from patients with Guillain-Barré syndrome. J Infect Dis 176:1105–1108

    Article  CAS  PubMed  Google Scholar 

  12. Stonnet V, Guesdon J-L (1993) Campylobacter jejuni: specific oligonucleotides and DNA probes for use in polymerase chain reaction-based diagnosis. FEMS Immunol Med Microbiol 7:337–344. doi:10.1111/j.1574-695X.1993.tb00415.x

    Article  CAS  PubMed  Google Scholar 

  13. Stonnet V, Sicinschi L, Mégraud F, Guesdon JL (1995) Rapid detection of Campylobacter jejuni and Campylobacter coli isolated from clinical specimens using the polymerase chain reaction. Eur J Clin Microbiol Infect Dis 14:355–359. doi:10.1007/BF02116533

    Article  CAS  PubMed  Google Scholar 

  14. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. doi:10.1093/molbev/msw054

    Article  CAS  PubMed  Google Scholar 

  15. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  16. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi:10.2307/2408678

    Article  PubMed  Google Scholar 

  17. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi:10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  18. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282. doi:10.1093/bioinformatics/8.3.275

    Article  CAS  Google Scholar 

  19. On SLW, Jordan PJ (2003) Evaluation of 11 PCR assays for species-Level identification of Campylobacter jejuni and Campylobacter coli. J Clin Microbiol 41:330–336. doi:10.1128/JCM.41.1.330-336.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the CRC corporation, Japan, to send clinical isolates to our laboratory.

Funding

This work was supported by the Health Labour Sciences Research Grant (Research on Emerging and Re-emerging Infectious Diseases) from the Ministry of Health, Labour and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Fujimoto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval and Informed Consent

Since all the isolates used in this study were anonymously obtained and analyzed, ethical approval and informed consent were not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, H., Kojima, F. & Fujimoto, S. New Identification of Three or More Campylobacter Species on the Basis of a Degenerate PCR–RFLP Method Targeting gyrB Gene. Curr Microbiol 74, 1160–1168 (2017). https://doi.org/10.1007/s00284-017-1300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1300-4

Navigation