Advertisement

Current Microbiology

, Volume 74, Issue 8, pp 943–951 | Cite as

Proteomic Analysis Revealed the Fruiting-Body Protein Profile of Auricularia polytricha

  • Dinghong Jia
  • Bo Wang
  • Xiaolin Li
  • Weihong Peng
  • Jie Zhou
  • Hao Tan
  • Jie Tang
  • Zhongqian Huang
  • Wei Tan
  • Bingcheng Gan
  • Zhirong Yang
  • Jian ZhaoEmail author
Article

Abstract

Auricularia polytricha is one of the most widely cultivated edible mushrooms in China. Many advances have been made to A. polytricha, but there is still no proteomic information of this species. Our current understanding was based upon the translated information of its transcriptome or other relative species. This study presented the proteomic information of fruiting-body proteins by shotgun liquid chromatography and tandem mass spectrometry (LC–MS/MS), which identified 15,508 peptides corresponding to 1850 high-confidence proteins. Of these, 1383 were annotated across the GO subcategories with 829 (44.81%) involved in biological process, 908 (49.08%) in molecular function, and 406 (21.95%) in cellular components. Among these high-confidence proteins, 132 proteins were annotated as carbohydrate-active enzymes, of which 51 were secreted enzymes. Moreover, a number of commercially important enzymes were detected, functioning as auxiliary activity (AA) family 5 glyoxal oxidase, AA5 galactose oxidase, glycoside hydrolase (GH) family 20 hexosaminidase, and GH47 alpha-mannosidase. To the best of our knowledge, this is the first study to characterize A. polytricha proteome, and also fills the gap of our knowledge on the under-developed mushroom species.

Notes

Compliance with Ethical Standards

Conflict of interest

No conflict of interest declared.

Supplementary material

284_2017_1268_MOESM1_ESM.xlsx (154 kb)
Supplementary material 1 (XLSX 153 kb). 1850 high-confidence proteins with two or more unique peptides
284_2017_1268_MOESM2_ESM.xlsx (36 kb)
Supplementary material 2 (XLSX 35 kb). Second level GO annotation in three categories of cellular component, molecular function and biological process
284_2017_1268_MOESM3_ESM.xlsx (71 kb)
Supplementary material 3 (XLSX 71 kb). Proteins from fruiting bodies of Auricularia polytricha and their KEGG pathways, in which proteins were assigned to 309 KEGG pathways
284_2017_1268_MOESM4_ESM.xlsx (22 kb)
Supplementary material 4 (XLSX 21 kb). KEGG classification of fruiting-body proteins from Auricularia polytricha
284_2017_1268_MOESM5_ESM.xlsx (21 kb)
Supplementary material 5 (XLSX 20 kb). Detailed information of 132 carbohydrate-active enzymes
284_2017_1268_MOESM6_ESM.xlsx (12 kb)
Supplementary material 6 (XLSX 11 kb). Relative gene expression of selected proteins
284_2017_1268_MOESM7_ESM.xlsx (11 kb)
Supplementary material 7 (XLSX 10 kb). Statistic information of proteins by KEGG classification
284_2017_1268_MOESM8_ESM.fasta (31 mb)
Supplementary material 8 (31,786 kb). Statistic information of proteins by KEGG classification

References

  1. 1.
    Abd Razak DL, Abdullah N, Khir Johari NM, Sabaratnam V (2013) Comparative study of mycelia growth and sporophore yield of Auricularia polytricha (Mont.) Sacc on selected palm oil wastes as fruiting substrate. Appl Microbiol Biotechnol 97(7):3207–3213. doi: 10.1007/s00253-012-4135-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Bengtsson O, Arntzen MO, Mathiesen G, Skaugen M, Eijsink VG (2016) A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. J Proteom 131:104–112. doi: 10.1016/j.jprot.2015.10.017 CrossRefGoogle Scholar
  3. 3.
    Bennett L, Sheean P, Zabaras D, Head R (2013) Heat-stable components of wood ear mushroom, Auricularia polytricha (higher Basidiomycetes), inhibit in vitro activity of beta secretase (BACE1). Int J Med Mushrooms 15(3):233–249CrossRefPubMedGoogle Scholar
  4. 4.
    Cetica P, Pintos L, Dalvit G, Beconi M (2003) Involvement of enzymes of amino acid metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro. Reproduction 126(6):753–763CrossRefPubMedGoogle Scholar
  5. 5.
    Chang ST, Quimio TH (1982) Tropical mushrooms, biological nature and cultivation methods, 1st edn. The Chinese University Press, Hong KongGoogle Scholar
  6. 6.
    Chellappan DK, Ganasen S, Batumalai S, Candasamy M, Krishnappa P, Dua K, Chellian J, Gupta G (2016) The protective action of the aqueous extract of Auricularia polytricha in paracetamol induced hepatotoxicity in rats. Recent Pat Drug Deliv Formul 10(1):72–76CrossRefPubMedGoogle Scholar
  7. 7.
    Chiu WC, Yang HH, Chiang SC, Chou YX, Yang HT (2014) Auricularia polytricha aqueous extract supplementation decreases hepatic lipid accumulation and improves antioxidative status in animal model of nonalcoholic fatty liver. Biomedicine (Taipei) 4:12. doi: 10.7603/s40681-014-0012-3 CrossRefGoogle Scholar
  8. 8.
    Collins C, Keane TM, Turner DJ, O’Keeffe G, Fitzpatrick DA, Doyle S (2013) Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: toward a new infection model system. J Proteome Res 12(6):2552–2570. doi: 10.1021/pr301131t CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Day J, Gietz RD, Rampitsch C (2015) Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling. Proteome Sci 13:3CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dong M, Gu J, Zhang L, Chen P, Liu T, Deng J, Lu H, Han L, Zhao B (2014) Data in support of comparative proteomics analysis of superior and inferior spikelets in hybrid rice during grain filling and response of inferior spikelets to drought stress using isobaric tags for relative and absolute quantification. Data Brief 1:51–55. doi: 10.1016/j.dib.2014.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotic J (2012) Proteins of higher fungi-from forest to application. Trends Biotechnol 30(5):259–273. doi: 10.1016/j.tibtech.2012.01.004 CrossRefPubMedGoogle Scholar
  12. 12.
    Fan S, Meng Y, Song M, Pang C, Wei H, Liu J, Zhan X, Lan J, Feng C, Zhang S, Yu S (2014) Quantitative phosphoproteomics analysis of nitric oxide-responsive phosphoproteins in cotton leaf. PLoS One 9(4):e94261. doi: 10.1371/journal.pone.0094261 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Galli E, Di Mario F, Rapana P, Lorenzoni P, Angelini R (2003) Copper biosorption by Auricularia polytricha. Lett Appl Microbiol 37(2):133–137CrossRefPubMedGoogle Scholar
  14. 14.
    Hohmann L, Sherwood C, Eastham A, Peterson A, Eng JK, Eddes JS, Shteynberg D, Martin DB (2009) Proteomic analyses using Grifola frondosa metalloendoprotease Lys-N. J Proteome Res 8(3):1415–1422. doi: 10.1021/pr800774h CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Horie K, Rakwal R, Hirano M, Shibato J, Nam HW, Kim YS, Kouzuma Y, Agrawal GK, Masuo Y, Yonekura M (2008) Proteomics of two cultivated mushrooms Sparassis crispa and Hericium erinaceum provides insight into their numerous functional protein components and diversity. J Proteome Res 7(5):1819–1835. doi: 10.1021/pr070369o CrossRefPubMedGoogle Scholar
  16. 16.
    Huang H, Cao L, Wan Y, Zhang R, Wang W (2012) Biosorption behavior and mechanism of heavy metals by the fruiting body of jelly fungus (Auricularia polytricha) from aqueous solutions. Appl Microbiol Biotechnol 96(3):829–840. doi: 10.1007/s00253-011-3846-6 CrossRefPubMedGoogle Scholar
  17. 17.
    Jiang J, Kuo CL, Wu L, Franke C, Kallemeijn WW, Florea BI, van Meel E, van der Marel GA, Codee JD, Boot RG, Davies GJ, Overkleeft HS, Aerts JM (2016) Detection of active mammalian GH31 alpha-glucosidases in health and disease using in-class, broad-spectrum activity-based probes. ACS Cent Sci 2(5):351–358. doi: 10.1021/acscentsci.6b00057 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Katsimpouras C, Dimarogona M, Petropoulos P, Christakopoulos P, Topakas E (2016) A thermostable GH26 endo-beta-mannanase from Myceliophthora thermophila capable of enhancing lignocellulose degradation. Appl Microbiol Biotechnol 100(19):8385–8397. doi: 10.1007/s00253-016-7609-2 CrossRefPubMedGoogle Scholar
  19. 19.
    Kuuskeri J, Hakkinen M, Laine P, Smolander OP, Tamene F, Miettinen S, Nousiainen P, Kemell M, Auvinen P, Lundell T (2016) Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Biotechnol Biofuels 9(1):192. doi: 10.1186/s13068-016-0608-9 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41. doi: 10.1186/1754-6834-6-41 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lin YL, Wen TN, Chang ST, Chu FH (2011) Proteomic analysis of differently cultured endemic medicinal mushroom Antrodia cinnamomea T.T. Chang et W.N. Chou from Taiwan. Int J Med Mushrooms 13(5):473–481CrossRefPubMedGoogle Scholar
  22. 22.
    Liu JY, Chang MC, Meng JL, Feng CP, Liu YN (2016) iTRAQ-based comparative proteomics analysis of the fruiting dikaryon and the non-fruiting monokaryon of Flammulina velutipes. Curr Microbiol. doi: 10.1007/s00284-016-1164-z Google Scholar
  23. 23.
    Mahajan S, Master ER (2010) Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose. Appl Microbiol Biotechnol 86(6):1903–1914. doi: 10.1007/s00253-010-2516-4 CrossRefPubMedGoogle Scholar
  24. 24.
    Merhej J, Richard-Forget F, Barreau C (2011) The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genet Biol 48(3):275–284. doi: 10.1016/j.fgb.2010.11.008 CrossRefPubMedGoogle Scholar
  25. 25.
    Mori T, Guo M, Li X, Mori E (2002) Human malignant cell death by apoptosis-inducing nucleosides from the decidua derived CD57(+)HLA-DR(bright) natural suppressor cell line. J Reprod Immunol 53(1–2):289–303CrossRefPubMedGoogle Scholar
  26. 26.
    O’Brien M, Grogan H, Kavanagh K (2014) Proteomic response of Trichoderma aggressivum f europaeum to Agaricus bisporus tissue and mushroom compost. Fungal Biol 118(9–10):785–791. doi: 10.1016/j.funbio.2014.06.004 CrossRefPubMedGoogle Scholar
  27. 27.
    Ogura K, Yamasaki M, Yamada T, Mikami B, Hashimoto W, Murata K (2009) Crystal structure of family 14 polysaccharide lyase with pH-dependent modes of action. J Biol Chem 284(51):35572–35579. doi: 10.1074/jbc.M109.068056 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ospina-Giraldo MD, Griffith JG, Laird EW, Mingora C (2010) The CAZyome of Phytophthora spp.: a comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora. BMC Genom 11:525. doi: 10.1186/1471-2164-11-525 CrossRefGoogle Scholar
  29. 29.
    Pan R, Cao L, Huang H, Zhang R, Mo Y (2010) Biosorption of Cd, Cu, Pb, and Zn from aqueous solutions by the fruiting bodies of jelly fungi (Tremella fuciformis and Auricularia polytricha). Appl Microbiol Biotechnol 88(4):997–1005. doi: 10.1007/s00253-010-2821-y CrossRefPubMedGoogle Scholar
  30. 30.
    Peng W, He X, Wang Y, Zhang Y, Ye X, Jia D, Guo Y, Gan B, Zheng C, Yang Z, Sun Q (2014) A new species of Scytalidium causing slippery scar on cultivated Auricularia polytricha in China. FEMS Microbiol Lett 359(1):72–80. doi: 10.1111/1574-6968.12564 CrossRefPubMedGoogle Scholar
  31. 31.
    Rahmad N, Al-Obaidi JR, Nor Rashid NM, Zean NB, Mohd Yusoff MH, Shaharuddin NS, Mohd Jamil NA, Mohd Saleh N (2014) Comparative proteomic analysis of different developmental stages of the edible mushroom Termitomyces heimii. Biol Res 47:30. doi: 10.1186/0717-6287-47-30 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rustiguel CB, Rosa JC, Jorge JA, de Oliveira AH, Guimaraes LH (2016) Secretome analysis of Metarhizium anisopliae under submerged conditions using bombyx mori chrysalis to induce expression of virulence-related proteins. Curr Microbiol 72(2):220–227. doi: 10.1007/s00284-015-0943-2 CrossRefPubMedGoogle Scholar
  33. 33.
    Sermsathanaswadi J, Baramee S, Tachaapaikoon C, Pason P, Ratanakhanokchai K, Kosugi A (2017) The family 22 carbohydrate-binding module of bifunctional xylanase/beta-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation. Enzyme Microb Technol 96:75–84. doi: 10.1016/j.enzmictec.2016.09.015 CrossRefPubMedGoogle Scholar
  34. 34.
    Shi H, Zhang Y, Xu B, Tu M, Wang F (2014) Characterization of a novel GH2 family alpha-l-arabinofuranosidase from hyperthermophilic bacterium Thermotoga thermarum. Biotechnol Lett 36(6):1321–1328. doi: 10.1007/s10529-014-1493-6 CrossRefPubMedGoogle Scholar
  35. 35.
    Sun D, Zhang H, Guo D, Sun A, Wang H (2013) Shotgun proteomic analysis of plasma from dairy cattle suffering from footrot: characterization of potential disease-associated factors. PLoS One 8(2):e55973. doi: 10.1371/journal.pone.0055973 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tu CJ, Dai J, Li SJ, Sheng QH, Deng WJ, Xia QC, Zeng R (2005) High-sensitivity analysis of human plasma proteome by immobilized isoelectric focusing fractionation coupled to mass spectrometry identification. J Proteome Res 4(4):1265–1273. doi: 10.1021/pr0497529 CrossRefPubMedGoogle Scholar
  37. 37.
    Val-Cid C, Biarnes X, Faijes M, Planas A (2015) Structural-functional analysis reveals a specific domain organization in family GH20 hexosaminidases. PLoS One 10(5):e0128075. doi: 10.1371/journal.pone.0128075 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang W, Zhang G, Zou J (2013) The interaction of polysaccharide from Auricularia polytricha with quantum dots and the protection of plasmid DNA from damage. Appl Biochem Biotechnol 169(8):2263–2272. doi: 10.1007/s12010-013-0135-0 CrossRefPubMedGoogle Scholar
  39. 39.
    Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. doi: 10.1038/nmeth.1322 CrossRefPubMedGoogle Scholar
  40. 40.
    Wu J, Ji Z, Wang N, Chi F, Xu C, Zhou Z, Zhang J (2016) Identification of conidiogenesis-associated genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-mediated transformation. Curr Microbiol 73(6):802–810. doi: 10.1007/s00284-016-1131-8 CrossRefPubMedGoogle Scholar
  41. 41.
    Wu NJ, Chiou FJ, Weng YM, Yu ZR, Wang BJ (2014) In vitro hypoglycemic effects of hot water extract from Auricularia polytricha (wood ear mushroom). Int J Food Sci Nutr 65(4):502–506. doi: 10.3109/09637486.2014.886183 CrossRefPubMedGoogle Scholar
  42. 42.
    Yang X, Guo M, Wu Y, Wu Q, Zhang R (2014) Removal of emulsified oil from water by fruiting bodies of macro-fungus (Auricularia polytricha). PLoS One 9(4):e95162. doi: 10.1371/journal.pone.0095162 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yap HY, Fung SY, Ng ST, Tan CS, Tan NH (2015) Shotgun proteomic analysis of tiger milk mushroom (Lignosus rhinocerotis) and the isolation of a cytotoxic fungal serine protease from its sclerotium. J Ethnopharmacol 174:437–451. doi: 10.1016/j.jep.2015.08.042 CrossRefPubMedGoogle Scholar
  44. 44.
    Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40(Web Server issue):W445–451. doi: 10.1093/nar/gks479 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yu GJ, Yin YL, Yu WH, Liu W, Jin YX, Shrestha A, Yang Q, Ye XD, Sun H (2015) Proteome exploration to provide a resource for the investigation of Ganoderma lucidum. PLoS One 10(3):e0119439CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yu J, Sun R, Zhao Z, Wang Y (2014) Auricularia polytricha polysaccharides induce cell cycle arrest and apoptosis in human lung cancer A549 cells. Int J Biol Macromol 68:67–71. doi: 10.1016/j.ijbiomac.2014.04.018 CrossRefPubMedGoogle Scholar
  47. 47.
    Yu L, Wang SF, Zhai QZ, Yao YQ, Jiang F, Lu YX (2015) Exceptional material requirement for reproduction in mouse oocytes. Genet Mol Res 14(4):14356–14365. doi: 10.4238/2015.November.13.21 CrossRefPubMedGoogle Scholar
  48. 48.
    Yu M, Ma B, Luo X, Zheng L, Xu X, Yang Z (2008) Molecular diversity of Auricularia polytricha revealed by inter-simple sequence repeat and sequence-related amplified polymorphism markers. Curr Microbiol 56(3):240–245. doi: 10.1007/s00284-007-9067-7 CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang J, Li C, Tang X, Lu Q, Sa R, Zhang H (2015) Proteome changes in the small intestinal mucosa of broilers (Gallus gallus) induced by high concentrations of atmospheric ammonia. Proteome Sci 13:9CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang Z, Wang S, Huang J, Liu L, Lu M, Li M, Sui Y, Xu L, Yan R, Song X, Li X (2015) Proteomic analysis of Eimeria acervulina sporozoite proteins interaction with duodenal epithelial cells by shotgun LC-MS/MS. Mol Biochem Parasitol 202(2):29–33. doi: 10.1016/j.molbiopara.2015.09.006 CrossRefPubMedGoogle Scholar
  51. 51.
    Zhao S, Rong C, Liu Y, Xu F, Wang S, Duan C, Chen J, Wu X (2015) Extraction of a soluble polysaccharide from Auricularia polytricha and evaluation of its anti-hypercholesterolemic effect in rats. Carbohydr Polym 122:39–45. doi: 10.1016/j.carbpol.2014.12.041 CrossRefPubMedGoogle Scholar
  52. 52.
    Zheng S, Huang H, Zhang R, Cao L (2014) Removal of Cr(VI) from aqueous solutions by fruiting bodies of the jelly fungus (Auricularia polytricha). Appl Microbiol Biotechnol 98(20):8729–8736. doi: 10.1007/s00253-014-5862-9 CrossRefPubMedGoogle Scholar
  53. 53.
    Zhou J, Chen Y, Xin M, Luo Q, Gu J, Zhao M, Xu X, Lu X, Song G (2013) Structure analysis and antimutagenic activity of a novel salt-soluble polysaccharide from Auricularia polytricha. J Sci Food Agric 93(13):3225–3230. doi: 10.1002/jsfa.6161 CrossRefPubMedGoogle Scholar
  54. 54.
    Zhou Y, Chen L, Fan X, Bian Y (2014) De novo assembly of Auricularia polytricha transcriptome using Illumina sequencing for gene discovery and SSR marker identification. PLoS One 9(3):e91740. doi: 10.1371/journal.pone.0091740 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Dinghong Jia
    • 1
    • 2
  • Bo Wang
    • 2
  • Xiaolin Li
    • 2
  • Weihong Peng
    • 2
  • Jie Zhou
    • 2
  • Hao Tan
    • 2
  • Jie Tang
    • 2
  • Zhongqian Huang
    • 2
  • Wei Tan
    • 2
  • Bingcheng Gan
    • 2
  • Zhirong Yang
    • 2
  • Jian Zhao
    • 1
    Email author
  1. 1.Key Laboratory of Biological Resource and Ecological Environment of the Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
  2. 2.Soil and Fertilizer InstituteSichuan Academy of Agricultural SciencesChengduChina

Personalised recommendations