Skip to main content
Log in

Role of Sod Gene in Response to Static Magnetic Fields in Pseudomonas aeruginosa

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The protective role of superoxide dismutase (SOD) against non-ionizing radiation such as static electromagnetic field (200 mT) has been studied in wild-type and mutant strain of Pseudomonas aeruginosa lacking cytosolic Mn-SOD (sodM), Fe-SOD (sodB), or both SODs (sodMB). Our results showed that inactivation of sodM and/or sodB genes increases the sensitivity of P. aeruginosa toward stress induced by the static magnetic field (200 mT). Furthermore, our results showed an enhancement of SOD, catalase, and peroxidases after exposure to the magnetic field. However, wild-type cells maintained significantly higher activities of antioxidant enzymes than mutant strains. The malondialdehyde produced by the oxidative degradation of unsaturated lipids and fatty acids showed significant increase in mutant strains compared to the wild-type. The overall results showed that the SOD has a protective role against a stress induced by static electromagnetic field in P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amara S, Abdelmelek H, Garrel C, Guiraud P, Douki T, Ravanat JL, Favier A, Sakly M, Ben Rhouma K (2006) Effects of subchronic exposure to static magnetic field on testicular function in rats. Arch Med Res 37:947–952

    Article  CAS  PubMed  Google Scholar 

  2. Amara S, Abdelmelek H, Garrel C, Guiraud P, Douki T, Ravanat JL, Favier A, Sakly M, Ben Rhouma K (2007) Zinc supplementation ameliorates static magnetic field-induced oxidative stress in rat tissues. Env Toxicol Pharmacol 23:193–197

    Article  CAS  Google Scholar 

  3. Amara S, Douki T, Garel C, Favier A, Sakly M, Rhouma KB, Abdelmelek H (2009) Effects of static magnetic field exposure on antioxidative enzymes activity and DNA in rat brain. Gen Physiol Biophy 28:260–265

    Article  CAS  Google Scholar 

  4. Beers RF, Sizer IW (1954) Sulfide inhibition of catalase. Science 120:32–33

    Article  CAS  PubMed  Google Scholar 

  5. Bekhite MM, Figulla HR, Sauer H, Wartenberg M (2013) Static magnetic fields increase cardiomyocyte differentiation of Flk-1+ cells derived from mouse embryonic stem cells via Ca2+ influx and ROS production. Int J Cardiol 167:798–808

    Article  PubMed  Google Scholar 

  6. Benoit MR, Mayer D, Barak Y, Chen IY, Hu W, Cheng Z, Wang SX, Spielman DM, Gambhir SS, Matin A (2009) Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clin Cancer Res 15:5170–5177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berk M, Dodd S, Henry M (2006) Do ambient electromagnetic fields affect behaviour? A demonstration of the relationship between geomagnetic storm activity and suicide. Bioelectromagnetics 27:151–155

    Article  PubMed  Google Scholar 

  8. Beuchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  Google Scholar 

  9. Calabro E, Condello S, Curro Monica, Ferlazzo Nadia, Caccamo Daniela, Magazu Salvatore, Ientile Riccardo (2013) Effects of low intensity static magnetic field on FTIR Spectra and ROS production in SH-SY5Y neuronal-like Cells. Bioelectromagnetics 34:618–629

    Article  CAS  PubMed  Google Scholar 

  10. Carlioz A, Touati D (1986) Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J 5:623–630

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ciejka E, Kleniewska P, Skibska B, Goraca A (2011) Effects of extremely low frequency magnetic field on oxidative balance in brain of rats. J Physiol Pharmacol 62:657–661

    CAS  PubMed  Google Scholar 

  12. Cintolesi F, Ritz T, Kay CWM, Timmel CR, Hore PJ (2003) Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: a model avian photomagnetoreceptor. Chem Phys 294:385–399

    Article  CAS  Google Scholar 

  13. Connor JR, Menzies SL (1995) Cellular management of iron in the brain. J Neurol Sci 134:33–44

    Article  CAS  PubMed  Google Scholar 

  14. Da Motta MA, Muniz JBF, Schuler A, Da Motta M (2004) Static magnetic fields enhancement of Saccharomyces cerevisae ethanolic fermentation. Biotechnol Prog 20:393–396

    Article  PubMed  Google Scholar 

  15. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  CAS  PubMed  Google Scholar 

  16. El May A, Snoussi S, Ben miloud N, Maatouk I, Abdelmelek H, Ben aissa R, Landoulsi A (2009) Effects of static magnetic field on cell growth, viability and differential gene expression in Salmonella. Foodborn Pathog Dis 6:547–552

    Article  Google Scholar 

  17. Farr SB, Touati D, Kogoma T (1988) Effects of oxygen stress on membrane functions in Escherichia coli: role of HPI catalase. J Bacteriol 170:1837–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Filipic J, Kraigher B, Tepus B, Kokol V, Mandic-Mulec I (2012) Effect of Low-density magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Bioresour Technol 120:225–232

    Article  CAS  PubMed  Google Scholar 

  19. Flipo D, Fournier M, Benquet C, Roux P, Le Boulaire C, Pinsky C, LaBella FS, Krzystyniak K (1998) Increased apoptosis, changes in intracellular Ca2+, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J Toxicol Envi Heal 54:63–76

    Article  CAS  Google Scholar 

  20. Ghodbane S, Amara S, Garrel C, Arnaud J, Ducros V, Favier A, Sakly M, Abdelmelek H (2011) Selenium supplementation ameliorates static magnetic field-induced disorders in antioxidant status in rat tissues. Env Toxicol Pharmacol 31:100–106

    Article  CAS  Google Scholar 

  21. Ghodbane S, Lahbib A, Ammari M, Sakly M, Abdelmelek H (2015) Does static magnetic field-exposure induced oxidative stress and apoptosis in rat kidney and muscle? Effect of vitamin E and selenium supplementations. Gen Physiol Biophys 34(1):23–32

    Article  CAS  PubMed  Google Scholar 

  22. Ghodbane S, Lahbib A, Sakly M, Abdelmelek H (2013) Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and cancer studies. Biomed Res Int. doi:10.1155/2013/602987

    PubMed  PubMed Central  Google Scholar 

  23. Gray JR, Frith CH, Parker JD (2000) In vivo enhancement of chemotherapy with static electric or magnetic fields. Bioelectromagnetics 21:575–583

    Article  CAS  PubMed  Google Scholar 

  24. Gruchlik A, Wilczok A, Chodurek E, Polechoński W, Wolny D, Dzierzewicz Z (2012) Effects of 300 mT static magnetic field on IL-6 secretion in normal human colonmyofibroblasts. Acta Pol Pharm 69:1320–1324

    CAS  PubMed  Google Scholar 

  25. Hassett DJ, Charniga L, Bean KA, Ohman DE, Cohen MS (1992) Antioxidant defense mechanisms in Pseudomonas aeruginosa: resistance to the redox-active antibiotic pyocyanin and demonstration of a manganese-cofactored superoxide dismutase. Infect Immun 60:328–336

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hassett DJ, Sokol PA, Howell ML, Ma JF, Schweizer HT, Ochsner U, Vasil ML (1996) Ferric uptake regulator (Fur) mutants of pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. J Bacteriol 178:3996–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hassett DJ, Woodruff WA, Wozniak DJ, Vasil ML, Cohen MS, Ohman DE (1993) Cloning of the sodA and sodB genes encoding manganese and iron superoxide dismutase in Pseudomonas aeruginosa: demonstration of increased manganese superoxide dismutase activity in alginate-producing bacteria. J Bacteriol 175:7658–7665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Iiyama K, ChiedaY Lee JM, Kusakabe T, Yasunaga-Aoki C, Shimizu S (2007) Effect of superoxide dismutase gene inactivation on virulence of Pseudomonas aeruginosa PAO1 toward the silkworm Bombyx mori. App Env Microbiol 73:1569–1575

    Article  CAS  Google Scholar 

  29. Imlay JA, Fridovich I (1992) Suppression of oxidative envelope damage by pseudoreversion of a superoxide dismutase deficient mutant of Escherichia coli. J Bacteriol 174:953–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ji W, Huang H, Deng A, Pan C (2009) Effects of static magnetic fields on Escherichia coli. Micron 40:894–898

    Article  PubMed  Google Scholar 

  31. Kabuto H, Yokoi I, Ogawa N, Mori A, Liburdy RP (2001) Effects of magnetic fields on the accumulation of thiobarbituric acid reactive substances induced by iron salt and H2O2 in mouse brain homogenates or phosphotidylcholine. Pathophysiology 7:283–288

    Article  CAS  PubMed  Google Scholar 

  32. Koppenol WH (2001) The Haber-Weiss cycle-70 years later. Redox Rep 6:229–234

    Article  CAS  PubMed  Google Scholar 

  33. Laramee CB, Frisch P, McLeod K, Li GC (2014) Elevation of heat shock gene expression from static magnetic field exposure in vitro. Bioelectromagnetics 35:406–413

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Ma Y, Li N, Cao Y, Zhu Y (2014) Natural static magnetic field-induced apoptosis in liver cancer cell. Electromagn Biol Med 33:47–50

    Article  PubMed  Google Scholar 

  35. Lowry OH, Roseebrough NJ, Faar AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  36. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erythrocuprein. J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  37. Mihoub M, El May A, Aloui A, Chatti A, Landoulsi A (2012) Effects of static magnetic fields on growth and membrane lipid composition of Salmonella typhimurium wild-type and dam mutant strains. Int J Food Microbiol 157:259–266

    Article  CAS  PubMed  Google Scholar 

  38. Mohtat N, Cozens FL, Hancock-Chen T, Scaiano JC, McLean J, Kim J (1998) Magnetic field effects on the behavior of radicals in protein and DNA environments. Photochem Photobiol 67:111–118

    Article  CAS  PubMed  Google Scholar 

  39. Nikerson RG, Tworkoski TJ, Luster DG (1993) Colletotrichum coccodes and thidiazuron alter specific peroxidase activities in velvetleaf (Abutilon theophrasti). Physiol Mol Plant Pathol 43:47–56

    Article  Google Scholar 

  40. Okano H (2008) Effects of static magnetic fields in biology: role of free radicals. Frontiers in Bioscience 13:6106–6125

    Article  CAS  PubMed  Google Scholar 

  41. Potenza L, Martinelli C, Polidori E, Zeppa S, Calcabrini C, Stocchi L, Sestili P, Stocchi V (2010) Effects of a 300 mT static magnetic field on human umbilical vein endothelial cells. Bioelectromagnetics 31:630–639

    Article  CAS  PubMed  Google Scholar 

  42. Rosen AD (2003) Effect of 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics 24:517–523

    Article  CAS  PubMed  Google Scholar 

  43. Sahebjamei H, Abdolmaleki P, Ghanati F (2007) Effects of magnetic field on the antioxidant enzyme activities of suspension-cultured tobacco cells. Bioelectromagnetics 28:42–47

    Article  CAS  PubMed  Google Scholar 

  44. Seyler RW Jr, Olson JW, Maier RJ (2001) Superoxide dismutase deficient mutants of Helicobacter pylori are hypersensitive to oxidative stress and deficient in host colonization. Infect Immun 69:4034–4040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiol 140:569–576

    Article  CAS  Google Scholar 

  46. Sullivan K, Balin AK, Allen RG (2011) Effects of static magnetic fields on the growth of various types of human cells. Bioelectromagnetics 32:140–147

    Article  PubMed  Google Scholar 

  47. Taskin M, Esim N, Genisel M, Ortucu S, Hasenekoglu I, Canli O, Erdals S (2013) Enhancement of invertase production by Aspergillus niger OZ-3 using low–intensity static magnetic fields. Prep Biochem Biotechnol 43:177–188

    Article  CAS  PubMed  Google Scholar 

  48. Wang X, Liang I (2009) Effects of static magnetic field on magnetosome formation and expression of mamA, mms13, mms6 and magA in Magnetospirillum magneticum AMB-1. Bioelectromagnetics 30:313–321

    Article  CAS  PubMed  Google Scholar 

  49. Zafari J, Jouni FJ, Abdolmaleki P, Jalali A, Khodayar MJ (2015) Investigation on the effect of static magnetic field up to 30mT on viability percent, proliferation rate and IC50 of Hela and fibroblasts cells. Electromagn Biol Med 34(3):216–220

    Article  PubMed  Google Scholar 

  50. Zhao G, Chen S, Wang L, Zhao Y, Wang J, Wang X, Zhang W, Wu R, Wu L, Wu Y, Xu A (2011) Cellular ATP content was decreased by a homogeneous 8.5 T static magnetic field exposure: role of reactive oxygen species. Bioelectromagnetics 32:94–101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Mr Iiyama Kazuhiro of the Fukuoka University of Agriculture for providing bacterial strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raouia Hanini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanini, R., Chatti, A., Ghorbel, S.B. et al. Role of Sod Gene in Response to Static Magnetic Fields in Pseudomonas aeruginosa . Curr Microbiol 74, 930–937 (2017). https://doi.org/10.1007/s00284-017-1264-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1264-4

Keywords

Navigation