Current Microbiology

, Volume 74, Issue 7, pp 832–839 | Cite as

Isolation and Complete Genome Sequence of a Novel Pseudoalteromonas Phage PH357 from the Yangtze River Estuary

  • Zheng Gong
  • Min WangEmail author
  • Qingwei Yang
  • Zhongshi Li
  • Jun Xia
  • Yu Gao
  • Yong JiangEmail author
  • Xue Meng
  • Zhaoyang Liu
  • Ding Yang
  • Fangfei Zhang
  • Hongbing Shao
  • Duobing Wang


Phage PH357, a novel lytic Pseudoalteromonas lipolytica phage belonging to the Myoviridae family was isolated from the Yangtze River estuary. The microbiological characterization demonstrated that phage PH357 is stable from −20 to 60 °C and the optimal pH 7. The one-step growth curve showed a latent period of 20 min, a rise period of 20 min, and the average burst size was about 85 virions per cell. Complete genome of phage PH357 was determined. Genome of phage PH357 consisted of a linear, double-stranded 136,203 bp DNA molecule with 34.58% G + C content, and 242 putative open reading frames (ORFs) without tRNA. All the predicted ORFs were classified into eight functional groups, including DNA replication, regulation and nucleotide metabolism, transcription, translation, phage packaging, phage structure, lysis, host or phage interactions, and hypothetical protein. A phylogenetic analysis showed that phage PH357 had similarity to the previously published Pseudoalteromonas phage PH101 and Vibrio phages. Furthermore, the study of phage PH357 genome will provide useful information for further research on the interaction between phages and their hosts.


Phage Genome Major Capsid Protein Yangtze River Estuary Phage PH357 Terminase Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors greatly appreciate the officers, crew, and scientific staff onboard the research vessel Dong Fang Hong 2 for facilitating the collection of the seawater samples.


This work was supported by the National Natural Science Foundation of China (NSFC Grant Nos. 31500339, 41676178, 41076088), the National Key Basic Research Program of China (973Program, Grant No: 2013CB429704), China Postdoctoral Science Foundation (Grant Nos. 2015M570612 and 2016T90649), and Fundamental Research Funds for the Central University of Ocean University of China (Grant Nos. 201564010 and 201512008).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest regarding this study.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

284_2017_1244_MOESM1_ESM.pdf (181 kb)
Supplementary material 1 (PDF 181 kb)
284_2017_1244_MOESM2_ESM.pdf (50 kb)
Supplementary material 2 (PDF 50 kb)


  1. 1.
    Bai Q, Zhang W, Yang Y, Tang F, Nguyen X, Liu G, Lu C (2013) Characterization and genome sequencing of a novel bacteriophage infecting streptococcus agalactiae with high similarity to a phage from streptococcus pyogenes. Adv Virol 158(8):1733–1741Google Scholar
  2. 2.
    Boetzer M, Pirovano W (2012) Toward almost closed genomes with GapFiller. Genom Biol 13:R56CrossRefGoogle Scholar
  3. 3.
    Bowman JP (2007) Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs 5(4):220–241CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cai L, Zhang R, He Y, Feng X, Jiao N (2016) Metagenomic analysis of Virioplankton of the subtropical Jiulong river estuary, China. Viruses 8(2):35CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Capra ML, Quiberoni A, Reinheimer JA (2004) Thermal and chemical resistance of Lactobacillus casei and Lactobacillus paracasei bacteriophages. Lett Appl Microbiol 38(6):499–504CrossRefPubMedGoogle Scholar
  6. 6.
    Colangelo-Lillis JR, Deming JW (2013) Genomic analysis of cold-active Colwelliaphage, 9A and psychrophilic phage–host interactions. Extremophiles 17(1):99–114CrossRefPubMedGoogle Scholar
  7. 7.
    Duhaime MB, Wichels A, Waldmann J, Teeling H, Glöckner FO (2011) Ecogenomics and genome landscapes of marine Pseudoalteromonas phage H105/1. ISME J 5(1):107–121CrossRefPubMedGoogle Scholar
  8. 8.
    Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399(6736):541–548CrossRefPubMedGoogle Scholar
  9. 9.
    Goldsmith DB, Crosti G, Dwivedi B, Dwivedi B, McDaniel LD, Varsani A, Suttle CA, Weinbauer MG, Sandaa RA, Breitbart M (2011) Development of phoH as a novel signature gene for assessing marine phage diversity. Appl Environ Microbiol 77(21):7730–7739CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huang GT, Le S, Peng YZ, Zhao Y, Yin SP, Zhang L, Yao X, Tan Y, Li M, Hu FQ (2013) Characterization and genome sequencing of phage Abp1, a new phiKMV-like virus infecting multidrug-resistant Acinetobacter baumannii. Curr Microbiol 66:535–543CrossRefPubMedGoogle Scholar
  11. 11.
    Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248CrossRefPubMedGoogle Scholar
  12. 12.
    Kallies R, Kiesel B, Schmidt M, Kacza J, Ghanem N, Narr A, Zopfi J, Wick LY, Hackermüller J, Harms H, Chatzinotas A (2017) Complete genome sequence of Pseudoalteromonas phage vB_PspS-H40/1 (formerly H40/1) that infects Pseudoalteromonas sp. strain H40 and is used as biological tracer in hydrological transport studies. Stand Genom Sci 12(1):20CrossRefGoogle Scholar
  13. 13.
    Kropinski AM, Waddell T, Meng J, Franklin K, Ackermann HW, Ahmed R, Mazzocco A, Yates J, Lingohr EJ, Johnson RP (2013) The host-range, genomics and proteomics of Escherichia coli, O157:H7 bacteriophage rV5. Virol J 10(1):1–12CrossRefGoogle Scholar
  14. 14.
    Li E, Xiao W, Ma Y, Zhe Y, Li H, Lin W, Wang X, Li C, Shen Z, Zhao R, Yang H, Jiang A, Yang W, Yuan J, Zhao X (2016) Isolation and characterization of a bacteriophage phieap-2 infecting multidrug resistant enterobacter aerogenes. Sci Rep 6:28338CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li P, Chen BB, Song Z, Song Y, Yang Y, Ma P, Wang H, Ying J, Ren P, Yang Y, Gao G, Jin S, Bao Q, Yang H (2012) Bioinformatic analysis of the Acinetobacter baumannii phage AB1 genome. Gene 507(2):125–134CrossRefPubMedGoogle Scholar
  16. 16.
    Li Y, Wang M, Liu Q, Song X, Wang D, Ma Y, Jiang Y (2016) Complete genomic sequence of bacteriophage H188: a novel Vibrio kanaloae phage isolated from yellow sea. Curr Microbiol 72(5):628–633CrossRefPubMedGoogle Scholar
  17. 17.
    Liu SB, Chen XL, He HL, Zhang XY, Xie BB, Yu Y, Zhang YZ (2013) Structure and ecological roles of a novel exopolysaccharide from the Arctic sea ice bacterium Pseudoalteromonas sp. strain SM20310. Appl Environ Microbiol 79(1):224–230CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Massouras A, Hens K, Gubelmann C, Uplekar S, Decouttere F, Rougemont J, Cole ST, Deplancke B (2010) Primer-initiated sequence synthesis to detect and assemble structural variants. Nat Methods 7:6–485CrossRefGoogle Scholar
  19. 19.
    Middelboe M, Chan A, Bertelsen SK (2010) Isolation and life-cycle characterization of lytic viruses infecting heterotrophic bacteria and cyanobacteria. Man Aquat Viral Ecol 13:118–133CrossRefGoogle Scholar
  20. 20.
    Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8(6):1779–1802CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Qin QL, Li Y, Zhang YJ, Zhou ZM, Zhang WX, Chen XL, Zhang YZ (2011) Comparative genomics reveals a deep-sea sediment-adapted life style of Pseudoalteromonas sp. SM9913. ISME J 5(2):274–284CrossRefPubMedGoogle Scholar
  22. 22.
    Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681CrossRefPubMedGoogle Scholar
  23. 23.
    Saitou N, Nei M (1987) The neighbor–joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  24. 24.
    Senčilo A, Luhtanen AM, Saarijärvi M, Bamford DH, Roine E (2015) Cold-active bacteriophages from the baltic sea ice have diverse genomes and virus–host interactions. Environ Microbiol 17(10):392–400Google Scholar
  25. 25.
    Suttle CA (2005) Viruses in the sea. Nature 437(7057):356–361CrossRefPubMedGoogle Scholar
  26. 26.
    Wang DB, Sun MQ, Shao HB, Li Y, Meng X, Liu ZY, Wang M (2015) Characterization and genome sequencing of a novel bacteriophage PH101 infecting Pseudoalteromonas marina BH101 from the yellow sea of China. Curr Microbiol 71(5):594–600CrossRefPubMedGoogle Scholar
  27. 27.
    Wang P, Yu Z, Li B, Cai X, Zeng Z, Chen X, Wang X (2015) Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas. Microb Cell Fact 14(1):1CrossRefGoogle Scholar
  28. 28.
    Wang W, Li M, Lin H, Wang J, Mao X (2016) The Vibrio parahaemolyticus-infecting bacteriophage qdvp001: genome sequence and endolysin with a modular structure. Adv Virol 161(10):2645–2652Google Scholar
  29. 29.
    Wichels A, Biel SS, Gelderblom HR, Brinkhoff T, Muyzer G, Schütt C (1998) Bacteriophage diversity in the North Sea. Appl Environ Microbiol 64(11):4128–4133PubMedPubMedCentralGoogle Scholar
  30. 30.
    Xu J, Hendrix RW, Duda RL (2004) Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 16:11–21CrossRefPubMedGoogle Scholar
  31. 31.
    Xu XW, Wu YH, Wang CS, Gao XH, Wang XG, Wu M (2010) Pseudoalteromonas lipolytica sp. nov., isolated from the Yangtze River estuary. Int J Syst Evol Microbiol 60(9):2176–2181CrossRefPubMedGoogle Scholar
  32. 32.
    Yu ZC, Chen XL, Shen QT, Zhao DL, Tang BL, Su HN, Wu ZY, Qin QL, Xie BB, Zhang XY, Yu Y (2015) Filamentous phages prevalent in Pseudoalteromonas spp. confer properties advantageous to host survival in Arctic sea ice. ISME J 9(4):871–881CrossRefPubMedGoogle Scholar
  33. 33.
    Yuan L, Cui Z, Wang Y, Guo X, Zhao Y (2014) Complete genome sequence of virulent bacteriophage shou24, which infects foodborne pathogenic vibrio parahaemolyticus. Adv Virol 159(11):3089–3093Google Scholar
  34. 34.
    Zeng Z, Guo XP, Li B, Wang P, Cai X, Tian X, Wang X (2015) Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities. Appl Microbiol Biotechnol 99(23):10127–10139CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoChina
  2. 2.Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
  3. 3.Key Lab of Polar Oceanography and Global Ocean ChangeOcean University of ChinaQingdaoChina

Personalised recommendations