Skip to main content
Log in

Functional Analysis of the Minimal Twin-Arginine Translocation System Components from Streptococcus thermophilus CGMCC 7.179 in Escherichia coli DE3

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The twin-arginine translocation (Tat) system, which is used for folded protein secretion, is rare in lactic acid bacteria (LAB). Previously, a Tat system composed of TatAS and TatCS subunits (the subscript S denotes a Streptococcus thermophilus origin) was identified in S. thermophilus CGMCC 7.179. In the present study, the tatA S and tatC S genes were cloned and functionally analyzed in Escherichia coli DE3 tat-deficient mutants. The E. coli tatABCDE-deficient mutant complemented with tatC S A S exhibited shortened cellular chains, but its ability to grow in the presence of sodium dodecyl sulfate (SDS) was not restored, suggesting that the S. thermophilus Tat system could partially replace that of E. coli. Surprisingly, the E. coli tatABE-deficient mutant complemented with tatA S and the E. coli tatC-deficient mutant complemented with tatC S displayed relatively normal cellular morphology and enhanced tolerance to SDS. These results suggest that TatAS and TatCS could serve as active protein translocases in E. coli DE3 tat-deficient mutants. Moreover, TatAS acted as a bifunctional subunit to fulfill the roles of both TatA and TatB of E. coli DE3. Thus, this minimal Tat system would be a promising candidate to translocate recombinant proteins in LAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barnett JP, Eijlander RT, Kuipers OP, Robinson CA (2008) Minimal Tat system from a gram-positive organism: a bifunctional TatA subunit participates in discrete TatAC and TatA complexes. J Biol Chem 283(5):2534–2542

    Article  CAS  PubMed  Google Scholar 

  2. Berks BC (1996) A common export pathway for proteins binding complex redox cofactors. Mol Microbiol 22:393–404

    Article  CAS  PubMed  Google Scholar 

  3. Bernhardt TG, de Boer PA (2003) The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway. Mol Microbiol 47(5):1171

    Article  Google Scholar 

  4. Biswas L, Biswas R, Nerz C, Ohlsen K, Schlag M, Schafer T et al (2009) Role of the Twin-Arginine translocation pathway in Staphylococcus. J Bacteriol 191(19):5921–5929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blaudeck N, Kreutzenbeck P, Muller M, Sprenger GA, Freudl R (2005) Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB. J Biol Chem 280(5):3426–3432

    Article  CAS  PubMed  Google Scholar 

  6. Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: Tc R and Km R cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158(1):9–14

    Article  CAS  PubMed  Google Scholar 

  7. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DeLisa MP, Tullman D, Georgiou G (2003) Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci USA 100(10):6115–6120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goosens VJ, Monteferrante CG, van Dijl JM (2014) The Tat system of Gram-positive bacteria. Biochim Biophys Acta 1843(8):1698–1706

    Article  CAS  PubMed  Google Scholar 

  10. Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N et al (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29(3):435–463

    CAS  PubMed  Google Scholar 

  11. Hu Y, Zhao E, Li H, Xia B, Jin C (2010) Solution NMR structure of the TatA component of the twin-arginine protein transport system from gram-positive bacterium Bacillus subtilis. J Am Chem Soc 132(45):15942

    Article  CAS  PubMed  Google Scholar 

  12. Ize B, Stanley NR, Buchanan G, Palmer T (2003) Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol 48(5):1183–1193

    Article  CAS  PubMed  Google Scholar 

  13. Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S et al (2004) Two minimal Tat translocases Bacillus. Mol Microbiol 54(5):1319–1325

    Article  CAS  PubMed  Google Scholar 

  14. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  15. Le Loir Y, Gruss A, Ehrlich SD, Langella PA (1998) Nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacterio 180(7):1895–1903

    CAS  Google Scholar 

  16. Matos CF, Di Cola A, Robinson C (2009) TatD is a central component of a Tat translocon-initiated quality control system for exported FeS proteins in Escherichia coli. EMBO Rep 10(5):474–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mori H, Cline K (2001) Post-translational protein translocation into thylakoids by the Sec and ∆pH-dependent pathways. Biochim Biophys Acta 1541(1):80–90

    Article  CAS  PubMed  Google Scholar 

  18. Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10(7):483

    CAS  PubMed  Google Scholar 

  19. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:320–324

    Article  Google Scholar 

  20. Rodriguez F, Rouse SL, Tait CE, Harmer J, De Riso A, Timmel CR et al (2013) Structural model for the protein-translocating element of the twin-arginine transport system. Proc Natl Acad Sci USA 110(12):101

    Article  Google Scholar 

  21. Rollauer SE, Tarry MJ, Graham JE, Jääskeläinen M, Jager F, Johnson S et al (2012) Structure of the TatC core of the twin-arginine protein transport system. Nature 492(7428):210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. BioScience 3:2344

    Google Scholar 

  23. Sauve V, Bruno S, Berks BC, Hemmings AM (2007) The soxYZ complex carries sulfur cycle intermediates on a peptide swinging arm. J Biol Chem 282(32):23194–23204

    Article  CAS  PubMed  Google Scholar 

  24. Tamime AY, Deeth HC (1980) Yoghurt: Technology and biochemistry. J Food Prot 43(12):939–977

    Article  CAS  Google Scholar 

  25. Tiwari KB, Birlingmair J, Wilkinson BJ, Jayaswal RK (2015) Role of the twin-arginine translocase (tat) system in iron uptake in Listeria monocytogenes. Microbiology 161(2):264–271

    Article  CAS  PubMed  Google Scholar 

  26. Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L, Thomas GH et al (1998) A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93(1):93–101

    Article  CAS  PubMed  Google Scholar 

  27. Zhang C, Xin Y, Wang Y, Guo T, Lu S, Kong J (2015) Identification of a novel dye-decolorizing peroxidase, EfeB, translocated by a twin-arginine translocation system in Streptococcus thermophilus CGMCC 7.179. Appl Environ Microbiol 81(18):6108–6119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Y, Wang L, Hu Y, Jin C (2014) Solution structure of the TatB component of the twin-arginine translocation system. Biochim Biophys Acta 1838(7):1881–1888

    Article  CAS  PubMed  Google Scholar 

  29. Zoufaly S, Frobel J, Rose P, Flecken T, Maurer C, Moser M et al (2012) Mapping precursor-binding site on Tatc subunit of twin arginine-specific protein translocase by site-specific photo cross-linking. J Biol Chem 287(16):13430–13441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Galleron for kindly providing the plasmid pSec:leiss:Nuc. This work was supported by National Natural Science Foundation of China (No. 31471715), Public Service Sectors (Agriculture) Special and Scientific Research Projects (No. 201503134) and National Natural Science Foundation of China (No. 31571855).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 258 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Guo, T., Xin, Y. et al. Functional Analysis of the Minimal Twin-Arginine Translocation System Components from Streptococcus thermophilus CGMCC 7.179 in Escherichia coli DE3. Curr Microbiol 74, 678–684 (2017). https://doi.org/10.1007/s00284-017-1234-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1234-x

Keywords

Navigation