Skip to main content
Log in

Quantification of Bacillus thuringiensis Vip3Aa16 Entomopathogenic Toxin Using Its Hemolytic Activity

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Vegetative insecticidal proteins produced by some Bacillus thuringiensis strains are specifically toxic to different agricultural pests such as the polyphagous Spodoptera and several other Lepidopteran insects, but one of the major problems found in the use of these biopesticides was the lack of an easy and credible method of quantification of such secreted toxins. Heterologous expression of B. thuringiensis Vip3Aa16 toxin was performed in Escherichia coli then the protein was purified by chromatography. Using blood agar as well as blood agar overlay (zymogram assay), we reported, for the first time, the capacity of Vip3Aa16 to induce hemolysis. The hemolytic activity of this protein was shown to be relatively stable after treatment at 40 °C and at a range of pH between 6.5 and 9. Moreover, a linear relationship was shown between hemolysis levels and Vip3Aa16 concentrations. The model established in the present study could quantify Vip3A toxin as a function of hemolytic activity and the assay proposed showed to be a simple and low-cost method to readily assess Vip3A toxins in liquid cultures and facilitate the use of this kind of bioinsecticides in pest management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdelkefi-Mesrati L, Boukedi H, Chakroun M, Kamoun F, Azzouz H, Tounsi S, Rouis S, Jaoua S (2011) Investigation of the steps involved in the difference of susceptibility of Ephestia kuehniella and Spodoptera littoralis to the Bacillus thuringiensis Vip3Aa16 toxin. J Invertebr Pathol 107:198–201

    Article  CAS  PubMed  Google Scholar 

  2. Abdelkefi-Mesrati L, Boukedi H, Dammak-Karray M, Sellami-Boudawara T, Jaoua S, Tounsi S (2011) Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. J Invertebr Pathol 106:250–254

    Article  CAS  PubMed  Google Scholar 

  3. Abdelkefi-Mesrati L, Rouis S, Sellami S, Jaoua S (2009) Prays oleae midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3LB differs from that of Cry1Ac toxin. Mol Biotechnol 43:15–19

    Article  CAS  PubMed  Google Scholar 

  4. Ben Hamadou-Charfi D, Boukedi H, Abdelkefi-Mesrati L, Tounsi S, Jaoua S (2013) Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin. J Invertebr Pathol 114:139–143

    Article  CAS  PubMed  Google Scholar 

  5. Boukedi H, Ben Khedher S, Triki N, Kamoun F, Saadaoui I, Chakroun M, Tounsi S, Abdelkefi-Mesrati L (2015) Overproduction of the Bacillus thuringiensis Vip3Aa16 toxin and study of its insecticidal activity against the carob moth Ectomyelois ceratoniae. J Invertebr Pathol 127:127–129

    Article  CAS  PubMed  Google Scholar 

  6. Boukedi H, Tounsi S, Abdelkefi-Mesrati L (2016) Abiotic factors affecting the larvicidal activity of the Bacillus thuringiensis Vip3Aa16 toxin against the lepidopteran pest Ephestia kuehniella. J Plant Dis Prot 123:59–64

    Article  Google Scholar 

  7. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  8. Butko P (2003) Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypotheses. Appl Environ Microbiol 69:2415–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chu L, Bramanti TE, Ebersole JL, Holt SC (1991) Hemolytic activity in the periodontopathogen Porphyromonas gingivalis: kinetics of enzyme release and localization. Infect Immun 56:1932–1940

    Google Scholar 

  10. Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci USA 93:5389–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fang J, Xu X, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen Z (2007) Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbiol 73:956–961

    Article  CAS  PubMed  Google Scholar 

  12. García-Sáez AJ, Buschhorn SB, Keller H, Anderluh G, Simons K, Schwille PJ (2011) Oligomerization and pore formation by equinatoxin II inhibit endocytosis and lead to plasma membrane reorganization. Biol Chem 286:37768–37777

    Article  Google Scholar 

  13. Gardos G (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochem Biophys Acta 30:653–654

    Article  CAS  PubMed  Google Scholar 

  14. Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I, Maktouf S, Chaabouni-Ellouze S (2012) Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. J Biomed Biotechnol. doi:10.1155/2012/373682

    PubMed  PubMed Central  Google Scholar 

  15. Hernández-Rodríguez CS, Boets A, Van Rie J, Ferré J (2009) Screening and identification of vip genes in Bacillus thuringiensis strains. Appl Microbiol 107:219–225

    Article  Google Scholar 

  16. Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  PubMed Central  Google Scholar 

  17. Kenny DA (1979) Correlation and causality. Wiley, New York

    Google Scholar 

  18. Liu J, Song F, Zhang J, Liu R, He K, Tan J, Huang D (2007) Identification of vip3Atype genes from Bacillus thuringiensis strains and characterization of a novel vip3A-type gene. Lett Appl Microbiol 45:432–438

    Article  CAS  PubMed  Google Scholar 

  19. Macián M, Seguer J, Infante MR, Selve C, Vinardell MP (1996) Preliminary studies of the toxic effects of non-ionic surfactants derived from lysine. Toxicology 106:1–9

    Article  PubMed  Google Scholar 

  20. Naimov S, Boncheva R, Karlova R, Dukiandjiev S, Minkov I, de Maagd RA (2008) Solubilization, activation, and insecticidal activity of Bacillus thuringiensis serovar thompsoni HD542 crystal proteins. Appl Environ Microbiol 74:7145–7151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Promdonkoy B, Ellar DJ (2003) Investigation of the pore-forming mechanism of a cytolytic δ-endotoxin from Bacillus thuringiensis. Biochem J 374:255–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Promdonkoy B, Rungrod A, Promdonkoy P, Pathaichindachote W, Krittanai C, Panyim SJ (2008) Amino acid substitutions in αA and αC of Cyt2Aa2 alter hemolytic activity and mosquito-larvicidal specificity. J Biotechnol 133:287–293.

    Article  CAS  PubMed  Google Scholar 

  23. Purcell JP, Greenplate JT, Sammons RD (1992) Examination of midgut luminal proteinase activities in six economically important insects. Insect Biochem Mol Biol 22:41–47

    Article  CAS  Google Scholar 

  24. Romero PJ, Romero EA (1999) The role of calcium metabolism in human red blood cell ageing: a proposal. Blood Cells Mol Dis 25:9–19

    Article  CAS  PubMed  Google Scholar 

  25. Sabirov RZ, Krasilnikov OV, Ternovsky VI, Merzliak PG (1993) Relation between ionic channel conductance and conductivity of media containing different nonelectrolytes. A novel method of pore size determination. Gen Physiol Biophys 12:95–111

    CAS  PubMed  Google Scholar 

  26. Savva CG, Fernandes da Costa SP, Bokori-Brown M, Naylor CE, Cole AR, Moss DS, Titball RW, Basak AK (2013) Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens. J Biol Chem 288:3512–3522

    Article  CAS  PubMed  Google Scholar 

  27. Szabo E, Murvai J, Fabian P, Fabian F, Hollosi M, Kajtar J, Buzas Z, Sajgo M, Pongor S, Asboth B (1993) Is an amphiphilic region responsible for the haemolytic activity of Bacillus thuringiensis toxin? Int J Pept Protein Res 42:527–532

    Article  CAS  PubMed  Google Scholar 

  28. Thompson M, Ellison SL, Wood R (2002) Harmonized guidelines for single laboratory validation of methods of analysis. Pure Appl Chem 74:835–855

    Article  CAS  Google Scholar 

  29. Weinstein SA, Bernheimer AW, Oppenheim JD (1988) Kinetics of hemolysis induced by a toxin from Bacillus thuringiensis israelensis. Toxicon 26:1177–1185

    Article  CAS  PubMed  Google Scholar 

  30. Yu X, Zheng A, Zhu J, Wang S, Wang L, Deng Q, Li S, Liu H, Li P (2010) Characterization of vegetative insecticidal protein vip genes of Bacillus thuringiensis from Sichuan Basin in China. Curr Microbiol 62:752–757

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the “Ministry of Higher Education and Scientific Research, Tunisia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobna Abdelkefi-Mesrati.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukedi, H., Ben Khedher, S., Ghribi, D. et al. Quantification of Bacillus thuringiensis Vip3Aa16 Entomopathogenic Toxin Using Its Hemolytic Activity. Curr Microbiol 74, 584–588 (2017). https://doi.org/10.1007/s00284-017-1224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1224-z

Keywords

Navigation