Skip to main content

Advertisement

Log in

Anaerobic Metabolism in T4 Acanthamoeba Genotype

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Members of the genus Acanthamoeba are of the most common protozoa that has been isolated from a variety of environment and affect immunocompromised individuals, causing granulomatous amoebic encephalitis and skin lesions. Acanthamoeba, in immunocompetent patients, may cause a keratitis related to corneal microtrauma. These free-living amoebas easily adapt to the host environment and wield metabolic pathways such as the energetic and respiratory ones in order to maintain viability for long periods. The energetic metabolism of cysts and trophozoites remains mostly unknown. There are a few reports on the energetic metabolism of these organisms as they are mitochondriate eukaryotes and some studies under aerobic conditions showing that Acanthamoeba hydrolyzes glucose into pyruvate via glycolysis. The aim of this study was to detect the energetic metabolic pathways with emphasis on anaerobic metabolism in trophozoites of three isolates of Acanthamoeba sp belonging to the T4 genotype. Two samples were collected in the environment and one was a clinical sample. The evaluation of these microorganisms proceeded as follows: rupture of trophozoites (7.5 × 103 parasites/ml) and biochemical analysis with high performance liquid chromatography and spectrophotometry. The anaerobic glycolysis was identified through the detection of glucose, pyruvate, and lactate. The protein catabolism was identified through the detection of fumarate, urea, and creatinine. The fatty acid oxidation was identified through the detection of acetate, beta-hydroxybutyrate, and propionate. The detected substances are the result of the consumption of energy reserves such as glycogen and lipids. The anaerobic glycolysis and protein catabolism pathways were observed in all three isolates: one clinical and two environmental. This study represents the first report of energetic pathways used by trophozoites from different isolates of the T4 genotype Acanthamoeba.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alves DSMM, Moraes AS, Nitz N, Oliveira MGC, Hecht MM, Gurgel-Gonçalves R, Cuba-Cuba AC (2012) Occurrence and characterization of Acanthamoeba similar to genotypes T4, T5 and T2/T6 isolated from environmental sources in Brasília, Federal District, Brazil. Exp Parasitol 131:239–244. doi:10.1016/j.exppara.2012.04.011

    Article  CAS  Google Scholar 

  2. Alves DSMM, Moraes AS, Gurgel-Gonçalves R, Alves LM, Lino Junior RS, Cuba CAC, Vinaud MC (2016) Experimental infection of T4 Acanthamoeba genotype determines the pathogenic potential. Parasitol Res 1–6. doi:10.1007/s00436-016-5105-3

  3. Aqeel Y, Siddiqui R, Farooq M, Khan NA (2015) Anaerobic respiration: in vitro efficacy of Nitazoxanide against mitochondriate Acanthamoeba castellanii of the T4 genotype. Exp Parasitol 157:170–176. doi:10.1016/j.exppara.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  4. Band RN, Mohrlok S (1969) The respiratory metabolism of Acanthamoeba rhysodes during encystation. J Gen Microbiol 59:351–358

    Article  CAS  Google Scholar 

  5. Bowers B, Korn ED (1968) The fine structure of Acanthamoeba castellanii (Neff strain). I. The trophozoite. J Cell Biol 39:95–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bowers B, Korn ED (1969) The fine structure of Acanthamoeba castellanii (Neff strain). II. Encystment. J Cell Biol 41:786–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bowers B, Korn ED (1974) Localization of lipophosphonoglycan on both sides of Acanthamoeba plasma membrane. J Cell Biol 62:533–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Champe PC, Harvey RA, Ferrier DR (2009) Bioquímica ilustrada, 4th edn. Artmed, Porto Alegre

    Google Scholar 

  9. Clarke DW, Niederkorn JY (2006) The pathophysiology of Acanthamoeba keratitis. Trends Parasitol 22(4):175–180. doi:10.1016/j.pt.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  10. Coombs GH, Mottram JC (1997) Parasite proteinases and amino acid metabolism: possibilities for chemotherapeutic exploitation. Parasitology 11(7):61–80

    Google Scholar 

  11. Ctrnacta V, Ault JG, Stejskal F, Keithly JS (2006) Localization of pyruvate: NADP oxidoreductase in sporozoites of Cryptosporidium parvum. J Eukaryot Microbiol 53:225–231. doi:10.1111/j.1550-7408.2006.00099.x

    Article  CAS  PubMed  Google Scholar 

  12. Fritz-Laylin LK, Prochnik SE, Ginger ML et al (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140:631–642. doi:10.1016/j.cell.2010.01.032

    Article  CAS  PubMed  Google Scholar 

  13. Ginger ML, Fritz-Laylin LK, Fulton C, Cande WZ, Dawson SC (2010) Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes. Protist 161:642–671. doi:10.1016/j.protis.2010.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hug LA, Stechmann A, Roger AJ (2010) Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol 27:311–324. doi:10.1093/molbev/msp237

    Article  CAS  PubMed  Google Scholar 

  15. Khan NA (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30(4):564–595. doi:10.1111/j.1574-6976.2006.00023.x

    Article  PubMed  Google Scholar 

  16. Khan NA, Jarroll EL, Paget TA (2002) Molecular and physiological differentiation between pathogenic and nonpathogenic Acanthamoeba. Curr Microbiol 45(3):197–202

    Article  CAS  PubMed  Google Scholar 

  17. Leger MM, Gawryluk RMR, Gray MW, Roger AJ (2013) Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS One 8(9):69532. doi:10.1371/journal.pone.0069532

    Article  Google Scholar 

  18. Lemgruber L, Lupetti P, Souza WD, Vommaro RC, Rocha-Azevedo B (2010) The fine structure of the Acanthamoeba polyphaga cyst wall. FEMS Microbiol Lett 305:170–176. doi:10.1111/j.1574-6968.2010.01925.x

    Article  CAS  PubMed  Google Scholar 

  19. Lorenzo-Morales J, Kliescikova J, Martinez-Carretero E, De Pablos LM, Profotova B, Nohynkova E, Osuna A, Valladares B (2008) Glycogen phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encystment process using RNA interference. Eukariotic Cell 509–517. doi:10.1128/EC.00316-07

  20. Martinez AJ, Visvesvara GS (1997) Free-living, amphizoic and opportunistic amebas. Brain Pathol 7(1):583–598

    Article  CAS  PubMed  Google Scholar 

  21. Ortega-Rivas A, Padrón JM, Valladares B, Elsheikha HM (2016) Acanthamoeba castellanii: a new high-throughput method for drug screening in vitro. Acta Trop 164(2016):95–99

    Article  CAS  PubMed  Google Scholar 

  22. Poulin R, Larochelle J, Hellebust JA (1987) The regulation of amino acid metabolism during hyperosmotic stress in Acanthamoeba castellanii. Comp Biochem Physiol 243(3):265–378. doi:10.1002/jez.1402430303

    Google Scholar 

  23. Prescott LM, Hoyme HE, Crockett D, Hui E (1973) Carbohydrate metabolism in Acanthamoeba castellanii 1. The activity of key enzymes and [14C]-glucose metabolism. Can J Microbiol 9:1131–1136. doi:10.1139/m73-180

    Article  Google Scholar 

  24. Pussard M, Pons R (1977) Morphologie de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistology 13:557–598

    Google Scholar 

  25. Scheid P (2014) Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms. Parasitol Res 113:2407–2414. doi:10.1007/s00436-014-3932-7

    Article  PubMed  Google Scholar 

  26. Serrano-Suárez A, Dellundé J, Salvadó H, Cervero-Aragó S, Méndez J, Canals O, Blanco S, Arcas A, Araujo R (2013) Microbial and physicochemical parameters associated with Legionella contamination in hot water recirculation systems. Environ Sci Pollut Res 20:5534–5544. doi:10.1007/s11356-013-1557-5

    Article  Google Scholar 

  27. Siddiqui R, Emes R, Elsheikha H, Khan NA (2011) Area 51: how do Acanthamoeba invade the central nervous system? Trends Parasitol 27(5):185–189. doi:10.1016/j.pt.2011.01.005

    Article  PubMed  Google Scholar 

  28. Schuster FL, Visvesvara GS (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 34(9):1001–1027. doi:10.1016/j.pt.2011.01.005

    Article  PubMed  Google Scholar 

  29. Tawfeek GM, Bishara SAH, Sarhan RM, Taher EE, Khayyal AE (2016) Genotypic, physiological, and biochemical characterization of potentially pathogenic Acanthamoeba isolated from the environment in Cairo, Egypt. Parasitol Res. doi:10.1007/s00436-016-4927-3

    PubMed  Google Scholar 

  30. Tomlinson G (1967) The glyoxylate pathway in Acanthamoeba sp. J Euk Microbiol 14(1):114–116. doi:10.1111/j.1550-7408.1967.tb01456.x

    CAS  Google Scholar 

  31. Vinaud MC, Lino Junior RS, Bezerra JCB (2007) Taenia crassiceps organic acids detected in cysticerci. Exp Parasitol 116:335–339. doi:10.1016/j.exppara.2007.01.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPQ for the financial support, Grant Number 471009/2013-0 to Dr. Marina Clare Vinaud.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniella de Sousa Mendes Moreira Alves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, D.d.S.M.M., Alves, L.M., da Costa, T.L. et al. Anaerobic Metabolism in T4 Acanthamoeba Genotype. Curr Microbiol 74, 685–690 (2017). https://doi.org/10.1007/s00284-017-1223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1223-0

Keywords

Navigation