Skip to main content

Advertisement

Log in

Desulfobulbus aggregans sp. nov., a Novel Sulfate Reducing Bacterium Isolated from Marine Sediment from the Gulf of Gabes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Three sulfate-reducing bacterial strains designated SM40T, SM41, and SM43 were isolated from marine sediment in the region of Skhira located in the Gulf of Gabes (Tunisia). These strains grew in anaerobic media with phosphogypsum as a sulfate source and sodium lactate as an electron and carbon source. One of them, strain SM40T, was characterized by phenotypic and phylogenetic methods. Cells were ovoid, Gram-stain-negative and non-motile. The temperature limits for growth were 10 and 55 °C with an optimum at 35 °C and the pH range was 6.5–8.1 with an optimum at pH 7.5. Growth was observed at salinities ranging from 10 to 80 g NaCl l−1 with an optimum at 30 g NaCl l−1. Strain SM40T was able to utilize butanol, ethanol, formate, l-glucose, glycerol, lactate, propanol, propionate, and pyruvate as electron donors for the reduction of sulfate, sulfite, or thiosulfate to H2S. Without electron acceptors, strain SM40T fermented butanol and pyruvate. The DNA G+C content of strain SM40T was 52.6 mol %. Phylogenetic analysis based on the 16S rRNA gene sequence of the isolate revealed that strain SM40T was closely related to the species in the genus Desulfobulbus of the family Desulfobulbaceae. The sequence similarity between strain SM40 and Desulfobulbus marinus was 95.4%. The phylogenetic analysis, DNA G+C content, and differences in substrate utilization suggested that strain SM40 represents a new species of the genus Desulfobulbus, D. aggregans sp. nov. The type strain is strain SM40T (=DSM 28693T = JCM 19994T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:141–145

    Article  Google Scholar 

  3. Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate reducing bacteria. J Microbiol Methods 4:33–36

    Article  CAS  Google Scholar 

  4. Devereux R, Delaney M, Widdel F, Stahl DA (1989) Natural relationships among sulfate-reducing eubacteria. J Bacteriol 171:6689–6695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fardeau ML, Ollivier B, Patel B K C, Magot M, Thomas P, Rimbault A, Rocchiccioli F, Garcia JL (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019

    Article  CAS  PubMed  Google Scholar 

  7. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likehood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  8. Felsenstein J (1985) Confidence limits of phylogenesis. Evol Int J org Evol 39:783–791

    Article  Google Scholar 

  9. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  10. Hungate RE (1969) A roll tube method for the cultivation of strict anaerobes. Method Microbiol 3B:117–132

    Article  CAS  Google Scholar 

  11. Jørgensen BB (1982) Mineralization of organic matter in the seabed: the role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  12. Kuever J, Rainey FA, Widdel F (2005) Class IV Deltaproteobacteria class nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds.) Bergey’s manual of systematic bacteriology, vol. 2, 2nd edn. Springer, New York, pp 922–1144

    Chapter  Google Scholar 

  13. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  14. Lien T, Madsen M, Steen IH, Gjerdevik K (1998) Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. Int J Syst Bact 48:469–474

    Article  Google Scholar 

  15. Louati A, Elleuch B, Kallel M, Saliot A, Dagaut J (2001) Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Mar Pollut Bull 42:445–452

    Article  CAS  PubMed  Google Scholar 

  16. Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bact 39:159–167

    Article  CAS  Google Scholar 

  17. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:405–425

    Google Scholar 

  18. Samain E, Dubourguier HC, Albagnac G (1984) Isolation and characterization of Desulfobulbus elongatus sp. nov. from a mesophilic industrial digester. Syst Appl Microbiol 5:391–401

    Article  CAS  Google Scholar 

  19. Sass A, Rutters H, Cypionka H, Sass H (2002) Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Arch Microbiol 177:468–474

    Article  CAS  PubMed  Google Scholar 

  20. Sorokin DY, Tourova TP, Panteleeva AN, Muyzer G (2012) Desulfonatronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes. Int J Syst Evol Microbiol 62:2107–2113

    Article  CAS  PubMed  Google Scholar 

  21. Soussi N, Ennet P, Koponen J, Sarkkula J, Ben Mustapha S (1995) Impact of the phosphogypsum waste in the Gulf of Gabes (Tunisia). In: Proceedings of the second international conference on the mediterranean coastal environment, Tarragona, Spain, pp 24–27

  22. Suzuki D, Ueki A, Amaishi A, Ueki K (2007) Diversity of substrate utilization and growth characteristics of sulfate-reducing bacteria isolated from estuarine sediment in Japan. J Gen Appl Microbiol 53:119–132

    Article  CAS  PubMed  Google Scholar 

  23. Weisburg W, Barns S, Pelletier D, Lane D (1991) 16 S ribosomal DNA amplification for phylogenetic study. J Bact 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400

    Article  CAS  PubMed  Google Scholar 

  25. Widdel F, Pfennig N (1982) Studies on dissimilatory sulfate reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 131:360–365

    Article  CAS  Google Scholar 

  26. Zaghden H, Kallel M, Louati A, Elleuch B, Oudot J (2005) Hydrocarbons in surface sediments from the Sfax coastal zone (Tunisia), Mediterranean Sea. Mar Pollut Bull 50:1287–1294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HK was supported by the Tunisian Chemical Group fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Karray.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

The GenBank Accession Number for Strain 28693T is KU180234.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharrat, H., Karray, F., Bartoli, M. et al. Desulfobulbus aggregans sp. nov., a Novel Sulfate Reducing Bacterium Isolated from Marine Sediment from the Gulf of Gabes. Curr Microbiol 74, 449–454 (2017). https://doi.org/10.1007/s00284-017-1211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1211-4

Keywords