Skip to main content
Log in

Intracellular Symbiotic Bacteria of Camponotus textor, Forel (Hymenoptera, Formicidae)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study focuses on the weaver ant, Camponotus textor, Forel which occurs in some areas of the Brazilian Cerrado and Atlantic Forest, and its symbionts: Blochmannia, an obligate symbiont of Camponotus, and Wolbachia, known for causing reproductive alterations in their hosts. The main goal of this study was to investigate the presence, frequency of occurrence, and diversity of Wolbachia and Blochmannia strains in C. textor colonies. We found high infection rates (100%) and the occurrence of at least two distinct strains of Blochmannia (H_1 or H_7) in the same species. The observed haplotype variation within a single species may result from the high mutation rate of the symbiont. Similarly, the Wolbachia was found in all colonies with different rates of infections and a new strain (supergroup A) was deposited in the MLST database. The diversity found in the present study shows that there is still much to explore to understand about these symbiotic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dasch GA, Weiss E, Chang K (1984) Endosymbiosis of insects. Bergey’s Man Syst Bacteriol 1:811–833

    Google Scholar 

  2. Zientz E, Feldhaar H, Stoll S, Gross R (2005) Insights into the microbial world associated with ants. Arch Microbiol 184:199–206. doi:10.1007/s00203-005-0041-0

    Article  CAS  PubMed  Google Scholar 

  3. Williams LE, Wernegreen JJ (2010) Unprecedented loss of ammonia assimilation capability in a urease-encoding bacterial mutualist. BMC Genomics 11:687. doi:10.1186/1471-2164-11-687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blochman F (1882) Über das vorkommen von bakterienähnlichengebilden in den geweben und eiernverschiedenerinsekten. Zentbl Bakteriol 11:234–240

    Google Scholar 

  5. Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266. doi:10.1146/annurev-ento-112408-085305

    Article  CAS  PubMed  Google Scholar 

  6. Russell JA, Funaro CF, Giraldo YM, Goldman-Huertas B, Suh D, Kronauer DJC, Moreau CS, Pierce NE (2012) A veritable menagerie of heritable bacteria from ants, butterflies, and beyond: broad molecular surveys and a systematic review. PLoS ONE 7:e51027. doi:10.1371/journal.pone.0051027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou W, Rousset F, O’Neill S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc Lond B 265:509–515

    Article  CAS  Google Scholar 

  8. Baldo L, Lo N, Werren JH (2005) Mosaic nature of the Wolbachia surface protein. J Bacteriol 187:5406–5418. doi:10.1128/JB.187.15.5406-5418.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baldo L, Bartos JD, Werren JH, Bazzocchi C, Casiraghi M, Panelli S (2002) Different rates of nucleotide substitutions in Wolbachia endosymbionts of arthropods and nematodes: arms race or host shifts? Parassitologia 44:179–187

    CAS  PubMed  Google Scholar 

  10. Paraskevopoulos C, Bordenstein S, Wernegreen JJ, Werren JH, Bourtzis K (2006) Toward a Wolbachia multilocus sequence typing system: discrimination of Wolbachia strains present in Drosophila species. Curr Microbiol 53:388–395. doi:10.1007/s00284-006-0054-1

    Article  CAS  PubMed  Google Scholar 

  11. Aksoy S (1995) Molecular analysis of the endosymbionts of tsetse flies: 16S rDNA locus and over-expression of a chaperonin. Insect Mol Biol 4:23–29. doi:10.1111/j.1365-2583.1995.tb00004.x

    Article  CAS  PubMed  Google Scholar 

  12. Bandi C, Sironi M, Damiani G, Magrassi L, Nalepa CA, Laudani U, Sacchi L 1995 The establishment of intracellular symbiosis in an ancestor of cockroaches and termites. Proc R Soc Lond B 259:293–299

    Article  CAS  Google Scholar 

  13. Baumann P, Baumann L, Lai CY, Rouhbakhsh D, Moran NA, Clark MA (1995) Genetics, physiology and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol 49:55–94

    Article  CAS  PubMed  Google Scholar 

  14. Sauer C, Stackebrandt E, Gadau J, Hölldobler B, Gross R (2000) Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov. Int J Syst Evol Microbiol 50:1877–1886. doi:10.1099/00207713-50-5-1877

    Article  CAS  PubMed  Google Scholar 

  15. Sameshima S, Hasegawa E, Kitade O, Minaka N, Matsumoto T (1999) Phylogenetic comparison of endosymbionts with their host ants based on molecular evidence. Zool Sci 16:993–1000. doi:10.2108/zsj.16.993

    Article  CAS  Google Scholar 

  16. Wernegreen JJ, Kauppinen SN, Brady SG, Ward PS (2009) One nutritional symbiosis begat another: phylogenetic evidence that the ant tribe Camponotini acquired Blochmannia by tending sap-feeding insects. BMC Evol Biol 9:292. doi:10.1186/1471-2148-9-292

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brown BP, Wernegreen JJ (2016) Deep divergence and rapid evolutionary rates in gut-associated Acetobacteraceae of ants. BMC Microbiol 16:140. doi:10.1186/s12866-016-0721-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hölldobler B, Wilson E (1990) The ants. Springer, Berlin

    Book  Google Scholar 

  19. Ramalho MO, Martins C, Silva LMR, Martins VG, Bueno OC (2016) Molecular profile of the brazilian weaver ant Camponotus textor Forel (Hymenoptera, Formicidae). Neotrop Entomol 45:463–470. doi:10.1007/s13744-016-0392-z

    Article  CAS  PubMed  Google Scholar 

  20. Schremmer F (1979) Die Nahezu unbekannte neotropische weberameise Camponotus (Myrmobrachys) senex (Hymenoptera: Formicidae). Entomol Gen 5:363–378

    Google Scholar 

  21. Ramalho MO, Santos RM, Fernandes TT, Morini MSC, Bueno OC (2016) Cytochrome c oxidase I DNA sequence of Camponotus ants with different nesting strategies is a tool for distinguishing between morphologically similar species. Genetica 144:375–383. doi:10.1007/s10709-016-9906-1

    Article  PubMed  Google Scholar 

  22. Longino JT (2006) New species and nomenclatural changes for the Costa Rican ant fauna (Hymenoptera: Formicidae). Myrmecol Nachr 8:131–143

    Google Scholar 

  23. Santos JC, Del-Claro K (2009) Ecology and behaviour of the weaver ant Camponotus (Myrmobrachys) senex. J Nat Hist 43:1423–1435. doi:10.1080/00222930902903236

    Article  Google Scholar 

  24. Zara FJ, Bution ML Caetano FH (2010) Post-embryonic development of larvae of the weaver ant Camponotus textor (Hymenoptera: Formicidae). Sociobiology 55:557–578

    Google Scholar 

  25. Martins C, Souza RF, Bueno OC (2012) Presence and distribution of the endosymbiont Wolbachia among Solenopsis spp. (Hymenoptera: Formicidae) from Brazil and its evolutionary history. J Invertebr Pathol 109:287–296. doi:10.1016/j.jip.2012.01.001

    Article  PubMed  Google Scholar 

  26. Souza FR, Ramalho JDS, Morini MSC, Wolff JLC, Araújo RC, Mascara D (2009) Identification and characterization of Wolbachia in Solenopsis saevissima fire ants (Hymenoptera: Formicidae) in Southeastern Brazil. Curr Microbiol 58:189–194. doi:10.1007/s00284-008-9301-y

    Article  Google Scholar 

  27. Frost CL, Fernández-Marín H, Smith JE, Hughes WOH (2010) Multiple gains and losses of Wolbachia symbionts across a tribe of fungus-growing ants. Mol Ecol 19:4077–4085. doi:10.1111/j.1365-294X.2010.04764.x

    Article  CAS  PubMed  Google Scholar 

  28. Braig HR, Zhou W, Dobson SL, O’Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180:2373–2378

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Shoemaker DD, Ross KG, Keller L, Vargo EL, Werren JH (2000) Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.). Insect Mol Biol 9:661–673. doi:10.1046/j.1365-2583.2000.00233.x

    Article  CAS  PubMed  Google Scholar 

  30. Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber AA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098–7110. doi:10.1128/AEM.00731-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou C, Yang Y, Jong A (1990) Mini-prep in ten minutes. Biotechniques 8:172–173

    CAS  PubMed  Google Scholar 

  32. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  33. Oksanen J, Kindt R, Legendre P, O’Hara B (2007) The vegan package. Commun Ecol 10:631–637

    Google Scholar 

  34. R Development Core Team (2016) R: a language and environment for statistical computing. http://www.R-project.org/

  35. Bivand R, Pebesma E, Gomez-Rubio V (2013) Spatial data import and export. In: Applied spatial data analysis with R. Springer, New York

  36. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi:10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  37. Swofford DL (2002) PAUP* version 4.0. Phylogenetic analysis using parsimony (and other methods)

  38. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  39. Higgins D, Bleasby A, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191

    CAS  PubMed  Google Scholar 

  40. Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  41. Huelsenbeck J, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  42. Wenseleers T, Sundström L, Billen J (2002) Deleterious Wolbachia in the ant Formica truncorum. Proc R Soc Lond B 269:623–629. doi:10.1098/rspb.2001.1927

    Article  CAS  Google Scholar 

  43. Degnan PH, Lazarus AB, Brock CD, Wernegreen JJ (2004) Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia. Syst Biol 53:95–110

    Article  PubMed  Google Scholar 

  44. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York

    Google Scholar 

  45. Sauer C, Dudaczek D, Hölldobler B, Gross R (2002) Tissue localization of the endosymbiotic bacterium Candidatus Blochmannia floridanus in adults and larvae of the carpenter ant Camponotus floridanus. Appl Environ Microbiol 68:4187–4193. doi:10.1128/AEM.68.9.4187-4193.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schröder D, Deppisch H, Obermayer M, Krohne G, Stackebrandt E, Hölldobler B, Goebel W, Gross R (1996) Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol Microbiol 21:479–489. doi:10.1111/j.1365-2958.1996.tb02557.x

    Article  PubMed  Google Scholar 

  47. Dykhuizen DE, Green L (1991) Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268. doi:10.1128/JB.173.22.7257-7268.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Williams LE, Wernegreen JJ (2015) Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini. PeerJ 3:e881. doi:10.7717/peerj.881

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dedeine F, Ahrens M, Calcaterra L, Shoemaker DD (2005) Social parasitism in fire ants (Solenopsis spp.): a potential mechanism for interspecies transfer of Wolbachia. Mol Ecol 14:1543–1548

    Article  CAS  PubMed  Google Scholar 

  50. Viljakainen L, Reuter M, Pamilo P (2008) Wolbachia transmission dynamics in Formica wood ants. BMC Evol Biol 8:55. doi:10.1186/1471-2148-8-55

    Article  PubMed  PubMed Central  Google Scholar 

  51. Campbell MA, Van Leuven JT, Meister RC, Carey KM, Simon C, McCutcheon JP (2015) Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc Natl Acad Sci USA 112:10192–10199. doi:10.1073/pnas.1421386112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Watanabe M, Tagami Y, Miura K, Kageyama D, Stouthamer R (2012) Distribution patterns of Wolbachia endosymbionts in the closely related flower bugs of the genus Orius: implications for coevolution and horizontal transfer. Microb Ecol 64:537–545. doi:10.1007/s00248-012-0042-x

    Article  PubMed  Google Scholar 

  53. Jaenike J, Stahlhut JK, Boelio LM, Unckless RL (2010) Association between Wolbachia and Spiroplasma within Drosophila neotestacea: an emerging symbiotic mutualism? Mol Ecol 19:414–425. doi:10.1111/j.1365-294X.2009.04448.x

    Article  CAS  PubMed  Google Scholar 

  54. Baldo L, Werren JH (2007) revisiting Wolbachia supergroup typing based on wsp: spurious lineages and discordance with MLST. Curr Microbiol 55:81–87. doi:10.1007/s00284-007-0055-8

    Article  CAS  PubMed  Google Scholar 

  55. Jiggins FM (2003) Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164:5–12

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Raychoudhury R, Baldo L, Oliveira DCSG, Werren JH (2009) Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution 63:165–183. doi:10.1111/j.1558-5646.2008.00533.x

    Article  CAS  PubMed  Google Scholar 

  57. Salunke BK, Salunkhe RC, Dhotre DP, Walujkar SA, Khandagale AB, Chaudhari R, Chandode RK, Ghate HV, Patole MS, Werren JH, Shouchea YS (2012) Determination of Wolbachia diversity in butterflies from Western Ghats, India, by a multigene approach. Appl Environ Microbiol 78:4458–4467. doi:10.1128/AEM.07298-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all our colleagues for their assistance: Dr Kleber Del-Claro, Dr Jacques Hubert Charles Delabie, Dr Viviane Cristina Tofolo Chaud, Dr Maria Santina Castro Morini, Dr Ana Carolina Marchiori, Dr Cynara de Melo Rodovalho, and Dr Corrie S. Moreau. We thank reviewers and editors who provided valuable suggestions for elaboration in this study. We thank Marilia de Oliveira Ramalho for editing images. This work supported by the CAPES Foundation, Brasilia, Brazil [Grant Number 007343/2014-00].

Funding

This work supported by the CAPES Foundation, Brasilia, Brazil [Grant Number 007343/2014-00].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela O. Ramalho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalho, M.O., Martins, C., Silva, L.M.R. et al. Intracellular Symbiotic Bacteria of Camponotus textor, Forel (Hymenoptera, Formicidae). Curr Microbiol 74, 589–597 (2017). https://doi.org/10.1007/s00284-017-1201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1201-6

Keywords

Navigation