Skip to main content
Log in

Chemical Composition, Antioxidant and Biological Activities of the Essential Oil and Extract of the Seeds of Glycine max (Soybean) from North Iran

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Glycine max (L.) Merrill (soybean) is a major leguminous crop, cultivated globally as well as in Iran. This study examines the chemical composition of soybean essential oil, and evaluates the antioxidant and antimicrobial activities of seeds on various plant pathogens that commonly cause irreparable damages to agricultural crops. The essential oil of soybean seeds was analyzed by gas chromatography coupled to mass spectrometry. Antimicrobial activity was tested against 14 microorganisms, including three gram-positive, five gram-negative bacteria, and six fungi, using disk diffusion method and the Minimum Inhibitory Concentration technique. The soybean seeds were also subjected to screening for possible antioxidant activity by using catalase, peroxidase, superoxide dismutase, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Forty components were identified, representing 96.68% of the total oil. The major constituents of the oil were carvacrol (13.44%), (E,E)-2,4-decadienal (9.15%), p-allylanisole (5.65%), p-cymene (4.87%), and limonene (4.75%). The oil showed significant activity against Pseudomonas syringae subsp. syringae, Rathayibacter toxicus with MIC = 25 µg/mL, and Pyricularia oryzae with MIC = 12.5 µg/mL. In addition, the free radical scavenging capacity of the essential oil was determined with an IC50 value of 162.35 µg/mL. Our results suggest that this plant may be a potential source of biocide, for economical and environmentally friendly disease control strategies. It may also be a good candidate for further biological and pharmacological investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Afolayan AJ, Jimoh FO, Sofidiya MO, Koduru S, Lewu FB (2007) Medicinal potential of the root of Arctotis arctotoides. Pharm Biol 45(6):486–493

    Article  CAS  Google Scholar 

  2. Amadioha AC (2000) Controlling rice blast in vitro and in vivo with extracts of Azadirachta indica. Crop Prot 19 (5):287–290

    Article  Google Scholar 

  3. Arora M, Singh S, Kaur R (2013) Phytochemical analysis, protein content & antimicrobial activities of selected samples of Glycine Max Linn. Int J Res Eng Technol 02(11):570–574

    Article  Google Scholar 

  4. Barry A (1976) The antimicrobic susceptibility test: principles and practices. Lea & Febiger, Philadelphia

    Google Scholar 

  5. Bobbarala V, Katikala PK, Naidu KC, Penumajji S (2009) Antifungal activity of selected plant extracts against phytopathogenic fungi Aspergillus niger F2723. Ind J Sci Technol 2(4):87–90

    Google Scholar 

  6. Bosio K, Avanzini C, D’avolio A, Ozino O, Savoia D (2000) In vitro activity of propolis against Streptococcus pyogenes. Lett Appl Microbiol 31(2):174–177

    Article  CAS  PubMed  Google Scholar 

  7. Boué SM, Shih BY, Carter-Wientjes CH, Cleveland TE (2003) Identification of volatile compounds in soybean at various developmental stages using solid phase microextraction. J Agric Food Chem 51(17):4873–4876

    Article  PubMed  Google Scholar 

  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  9. Chance B, Maehly AC (1955) [136] Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  10. Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J food drug Anal 10(3):178–182

    CAS  Google Scholar 

  11. Costa TR, Fernandes OFL, Santos SC, Oliveira CMA, Lião LM, Ferri PH, Paula JR, Ferreira HD, Sales BHN, Silva MRR (2000) Antifungal activity of volatile constituents of Eugenia dysenterica leaf oil. J Ethnopharmacol 72(1):111–117

    Article  CAS  PubMed  Google Scholar 

  12. Colpas FT, Ono EO, Rodrigues JD, Passos JRdS (2003) Effects of some phenolic compounds on soybean seed germination and on seed-borne fungi. Brazilian Arch Biol Technol 46(2):155–161

    Article  CAS  Google Scholar 

  13. Couto C, Silva LR, Valentão P, Velázquez E, Peix A, Andrade PB (2011) Effects induced by the nodulation with Bradyrhizobium japonicum on Glycine max (soybean) metabolism and antioxidant potential. Food Chem 127(4):1487–1495

    Article  CAS  Google Scholar 

  14. Dalvie MA, Sosan MB, Africa A, Cairncross E, London L (2014) Environmental monitoring of pesticide residues from farms at a neighbouring primary and pre-school in the Western Cape in South Africa. Sci Total Environ 466:1078–1084

    Article  PubMed  Google Scholar 

  15. De B, Agarwala S (2014) Antimicrobial activity of soybean and sunflower oil post frying vegetables from Allium and Brassica family. Int J Nutr Agric Res 1(1):72–82

    Google Scholar 

  16. Dharshini Thirunalasundari T, Sumayaa S (2013) GC-MS determination of bioactive compounds of Glycine Max. (Soybean). Int J Med Chem Anal 3(2):79–82

    Google Scholar 

  17. Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101

    Article  CAS  Google Scholar 

  18. Farkas GL, Kiraaly Z (1962) Role of phenolic compounds in the physiology of plant diseases and disease resistance. J Phytopathol 44(2):105–150

    Article  CAS  Google Scholar 

  19. Gapińska M, Skłodowska M, Gabara B (2008) Effect of short-and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant 30 (1):11–18.

    Article  Google Scholar 

  20. Garriga M, Caballero J (2011) Insights into the structure of urea-like compounds as inhibitors of the juvenile hormone epoxide hydrolase (JHEH) of the tobacco hornworm Manduca sexta: analysis of the binding modes and structure-activity relationships of the inhibitors by docking and CoMFA calculations. Chemosphere 82(11):1604–1613

    Article  CAS  PubMed  Google Scholar 

  21. Ghahari S, Alinezhad H, Nematzadeh GA, Ghahari S (2015) Phytochemical screening and antimicrobial activities of the constituents isolated from Koelreuteria paniculata leaves. Nat Prod Res 29(19):1865–1869

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh A, Ricke SC, Almeida G, Gibson KE (2016) Combined application of essential oil compounds and bacteriophage to inhibit growth of Staphylococcus aureus in vitro. Curr Microbiol 72(4):426–435

    Article  CAS  PubMed  Google Scholar 

  23. Gomathi D, Kalaiselvi M, Ravikumar G, Devaki K, Uma C (2015) GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. J Food Sci Technol 52(2):1212–1217

    Article  CAS  PubMed  Google Scholar 

  24. Hammami S, El Mokni R, Faidi K, Falconieri D, Piras A, Procedda S, Mighri Z, El Aouni MH (2015) Chemical composition and antioxidant activity of essential oil from aerial parts of Teucrium flavum L. subsp. flavum growing spontaneously in Tunisia. Nat Prod Res 29(24):2336–2340

    Article  CAS  PubMed  Google Scholar 

  25. Hanif MA, Al-Maskari AY, Al-Sabahi JN, Al-Hdhrami I, Khan MM, Al-Azkawi A, Hussain AI (2015) Chemical characterisation of bioactive compounds in Medicago sativa growing in the desert of Oman. Nat Prod Res 29(24):2332–2335

    Article  CAS  PubMed  Google Scholar 

  26. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96(2):67–202

    Article  CAS  PubMed  Google Scholar 

  27. Herman A, Tambor K, Herman A (2016) Linalool affects the antimicrobial efficacy of essential oils. Curr Microbiol 72(2):165–172

    Article  CAS  PubMed  Google Scholar 

  28. Joshi RK (2014) Study on essential oil composition of the roots of Crassocephalum crepidioides (Benth.) s. moore. J Chil Chem Soc 59(1):2363–2365

    Article  CAS  Google Scholar 

  29. Kang HM, Saltveit ME (2001) Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiol Plant 113(4):548–556

    Article  CAS  Google Scholar 

  30. Kanwal Q, Hussain I, Latif Siddiqui HL, Javaid A (2010) Antifungal activity of flavonoids isolated from mango (Mangifera indica L.) leaves. Nat Prod Res 24(20):1907–1914

    Article  CAS  PubMed  Google Scholar 

  31. Kaufman PB, Cseke LJ, Warber S, Duke JA, Brielmann HL (1999) Natural products from plants. CRC Press, London, pp 30–35

    Google Scholar 

  32. Kim HJ, Suh HJ, Lee CH, Kim JH, Kang SC, Park S, Kim JS (2010) Antifungal activity of glyceollins isolated from soybean elicited with Aspergillus sojae. J Agric Food Chem 58(17):9483–9487

    Article  CAS  PubMed  Google Scholar 

  33. Klein G, Rüben C, Upmann M (2013) Antimicrobial activity of essential oil components against potential food spoilage microorganisms. Curr Microbiol 67(2):200–208

    Article  CAS  PubMed  Google Scholar 

  34. Kukreja RC, Jesse RL, Hess ML (1992) Singlet oxygen: a potential culprit in myocardial injury? Mol Cell Biochem 111(1–2):17–24

    CAS  PubMed  Google Scholar 

  35. Kumar M, Chandel M, Kumar S, Kaur S (2011) Protective effects of Koelreuteria paniculata Laxm. on oxidative stress and hydrogen peroxide-induced DNA damage. Phytopharmacology 1(5):177–189

    CAS  Google Scholar 

  36. Liyana-Pathirana CM, Shahidi F (2005) Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. J Agric Food Chem 53(7):2433–2440

    Article  CAS  PubMed  Google Scholar 

  37. Lucio EMRDA, Viana CLC, De Andrade FJF, Burchianti M, Burchianti G (1997) Process for the extraction and purification of alkaloids. US Patent No. 5,684,155

  38. Mahmoudzadeh M, Hosseini H, Nasrollahzadeh J, Khaneghah AM, Rismanchi M, Chaves RD, Shahraz F, Azizkhani M, Mahmoudzadeh L, Haslberger AG (2016) antibacterial activity of Carum copticum essential oil against Escherichia Coli O157: H7 in meat: stx genes expression. Curr Microbiol. doi:10.1007/s00284-016-1048-2

    PubMed  Google Scholar 

  39. Malenčić D, Popović M, Miladinović J (2007) Phenolic content and antioxidant properties of soybean (Glycine max (L.) Merr.) seeds. Molecules 12(3):576–581

    Article  PubMed  Google Scholar 

  40. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5 (4):359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martins CHZ, Freire MdGM, Parra JRP, Macedo MLR (2012) Physiological and biochemical effects of an aqueous extract of Koelreuteria paniculata (Laxm.) seeds on Anticarsia gemmatalis (Huebner)(Lepidoptera: Noctuidae). SOAJ Entomol Stud 1:49–61

    Google Scholar 

  42. Militello M, Settanni L, Aleo A, Mammina C, Moschetti G, Giammanco G, Blàzquez MA, Carrubba A (2011) Chemical composition and antibacterial potential of Artemisia arborescens L. essential oil. Curr Microbiol 62(4):1274–1281

    Article  CAS  PubMed  Google Scholar 

  43. Ohri P, Pannu SK (2010) Effect of phenolic compounds on nematodes-A review. J Appl Nat Sci 2:344–350

    Google Scholar 

  44. Patil SS, Young RR, Powelson RL (1964) Relation of chlorogenic acid and free phenols in potato roots to infection by Verticillium albo-atrum. Phytopathology 54(5):531–535

    CAS  Google Scholar 

  45. Pierozan MK, Pauletti GF, Rota L, Santos ACAd, Lerin LA, Di Luccio M, Mossi AJ, Atti-Serafini L, Cansian RL, Oliveira JV (2009) Chemical characterization and antimicrobial activity of essential oils of salvia L. species. Food Sci Technol 29(4):764–770

    Google Scholar 

  46. Plonjarean S, Phutdhawong W, Siripin S, Suvannachai N, Sengpracha W (2007) Flavour compounds of the Japanese vegetable soybean” Chakaori” growing in Thailand. Maejo Int J Sci Technol 1:1–9

    CAS  Google Scholar 

  47. Ponnusha BS, Subramaniyam S, Pasupathi P, subramaniyam B, Virumandy R (2011) Antioxidant and antimicrobial properties of Glycine Max-A review. Int J Cur Bio Med Sci 1(2):49–62

    Google Scholar 

  48. Pourmorad F, Hosseinimehr SJ, Shahabimajd N (2006) Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African J Biotechnol 5(11):1142–1145

    CAS  Google Scholar 

  49. Rigano D, Arnold NA, Conforti F, Menichini F, Formisano C, Piozzi F, Senatore F (2011) Characterisation of the essential oil of Nepeta glomerata Montbret et Aucher ex Bentham from Lebanon and its biological activities. Nat Prod Res 25(6):614–626

    Article  CAS  PubMed  Google Scholar 

  50. Ruth SM, Dings L, Aprea E, Odake S (2005) Comparison of volatile flavour profiles of kidney beans and soybeans by GC-MS and PTR-MS. Food Sci Technol Res 11(1):63–70

    Article  Google Scholar 

  51. Saba N, Ahmad VU, Ali Z, Khan KM (2010) Separation and identification of a new saponin from the flowers of Guaiacum officinale L. Nat Prod Res 24(20):1877–1882

    Article  CAS  PubMed  Google Scholar 

  52. Silva LR, Pereira MJ, Azevedo J, Mulas R, Velazquez E, González-Andrés F, Valentão P, Andrade PB (2013) Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds. Food Chem 141(4):3636–3648

    Article  CAS  PubMed  Google Scholar 

  53. Sonboli A, Salehi P, Yousefzadi M (2004) Antimicrobial activity and chemical composition of the essential oil of Nepeta crispa Willd. from Iran. Z Naturforsch C 59 (9–10):653–656

    CAS  PubMed  Google Scholar 

  54. Tackie AN, Boye GL, Sharaf MH, Schiff PL Jr, Crouch RC, Spitzer TD, Johnson RL, Dunn J, Minick D, Martin GE (1993) Cryptospirolepine, a unique spiro-nonacyclic alkaloid isolated from Cryptolepis sanguinolenta. J Nat Prod 56(5):653–670

    Article  CAS  Google Scholar 

  55. Upadhyaya A, Sankhla D, Davis TD, Sankhla N, Smith BN (1985) Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves. J Plant Physiol 121(5):453–461

    Article  CAS  Google Scholar 

  56. Xia DZ, Yu XF, Zhu ZY, Zou ZD (2011) Antioxidant and antibacterial activity of six edible wild plants (Sonchus spp.) in China. Nat Prod Res 25(20):1893–1901

    Article  CAS  PubMed  Google Scholar 

  57. Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M (2002) Free radical scavenging properties of wheat extracts. J Agric Food Chem 50(6):1619–1624

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support of this work from Genetics and Agricultural Biotechnology Institute of Taberestan (GABIT) and Research Council of University of Mazandran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghorban Ali Nematzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahari, S., Alinezhad, H., Nematzadeh, G.A. et al. Chemical Composition, Antioxidant and Biological Activities of the Essential Oil and Extract of the Seeds of Glycine max (Soybean) from North Iran. Curr Microbiol 74, 522–531 (2017). https://doi.org/10.1007/s00284-016-1188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1188-4

Keywords

Navigation