Skip to main content
Log in

The Archaeal Signal Recognition Particle: Present Understanding and Future Perspective

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The signal recognition particle (SRP) and its receptor constitute universally conserved and essential cellular machinery that controls the proper membrane localization of nascent polypeptides with the transmembrane domain. In the past decade, there has been an immense advancement in our understanding of this targeting machine in all three domains of life. A significant portion of such progress came from the structural analysis of archaeal SRP components. Despite the availability of structural insights from different archaeal SRP components, little is known about protein translocation in this domain of life compared to either bacteria or eukaryotes. One of the primary reasons being limited availability of the genetic and cell biological tools in archaea. In the present review, an attempt has been made to explore the structural information available for archaeal SRP components to gain insights into the protein translocation mechanism of this group of organisms. Besides, many exciting avenues of archaeal research possible using the recently developed genetic and cell biological tools for some species have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ataide SF, Schmitz N, Shen K, Ke A, Shan SO, Doudna JA et al (2011) The crystal structure of the signal recognition particle in complex with its receptor. Science 331(6019):881–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Atomi H, Imanaka T, Fukui T (2012) Overview of the genetic tools in the Archaea. Front Microbiol 3:337

    Article  PubMed  PubMed Central  Google Scholar 

  3. Auer J, Spicker G, Bock A (1991) Presence of a gene in the archaebacterium Methanococcus vannielii homologous to secY of eubacteria. Biochimie 73(6):683–688

    Article  CAS  PubMed  Google Scholar 

  4. Batey RT, Rambo RP, Lucast L, Rha B, Doudna JA (2000) Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287(5456):1232–1239

    Article  CAS  PubMed  Google Scholar 

  5. Beckert B, Kedrov A, Sohmen D, Kempf G, Wild K, Sinning I et al (2015) Translational arrest by a prokaryotic signal recognition particle is mediated by RNA interactions. Nat Struct Mol Biol 22(10):767–773

    Article  CAS  PubMed  Google Scholar 

  6. Bercovich-Kinori A, Bibi E (2015) Co-translational membrane association of the Escherichia coli SRP receptor. J Cell Sci 128(7):1444–1452

    Article  CAS  PubMed  Google Scholar 

  7. Bhuiyan SH, Gowda K, Hotokezaka H, Zwieb C (2000) Assembly of archaeal signal recognition particle from recombinant components. Nucl Acids Res 28(6):1365–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bitan-Banin G, Ortenberg R, Mevarech M (2003) Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene. J Bacteriol 185(3):772–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349(6305):117–127

    Article  CAS  PubMed  Google Scholar 

  10. Bousset L, Mary C, Brooks MA, Scherrer A, Strub K, Cusack S (2014) Crystal structure of a signal recognition particle Alu domain in the elongation arrest conformation. RNA 20(12):1955–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Breuert S, Allers T, Spohn G, Soppa J (2006) Regulated polyploidy in halophilic archaea. PLoS ONE 1:e92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Buskiewicz I, Kubarenko A, Peske F, Rodnina MV, Wintermeyer W (2005) Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY. RNA 11(6):947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calo D, Eichler J (2011) Crossing the membrane in Archaea, the third domain of life. Biochim Biophys Acta 1808(3):885–891

    Article  CAS  PubMed  Google Scholar 

  14. Cao TB, Saier MH Jr (2003) The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta 1609(1):115–125

    Article  CAS  PubMed  Google Scholar 

  15. Dale H, Krebs MP (1999) Membrane insertion kinetics of a protein domain in vivo. The bacterioopsin n terminus inserts co-translationally. J Biol Chem 274(32):22693–22698

    Article  CAS  PubMed  Google Scholar 

  16. Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG (2014) The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 31(2–3):58–84

    Article  CAS  PubMed  Google Scholar 

  17. Deshaies RJ, Sanders SL, Feldheim DA, Schekman R (1991) Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349(6312):806–808

    Article  CAS  PubMed  Google Scholar 

  18. Diener JL, Wilson C (2000) Role of SRP19 in assembly of the Archaeoglobus fulgidus signal recognition particle. Biochemistry 39(42):12862–12874

    Article  CAS  PubMed  Google Scholar 

  19. Duong F, Wickner W (1997) The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J 16(16):4871–4879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duong F, Wickner W (1997) Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J 16(10):2756–2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Economou A, Pogliano JA, Beckwith J, Oliver DB, Wickner W (1995) SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83(7):1171–1181

    Article  CAS  PubMed  Google Scholar 

  22. Egea PF, Napetschnig J, Walter P, Stroud RM (2008) Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus. PLoS ONE 3(10):e3528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM (2004) Substrate twinning activates the signal recognition particle and its receptor. Nature 427(6971):215–221

    Article  CAS  PubMed  Google Scholar 

  24. Egea PF, Stroud RM (2010) Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci USA 107(40):17182–17187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Egea PF, Tsuruta H, de Leon GP, Napetschnig J, Walter P, Stroud RM (2008) Structures of the signal recognition particle receptor from the Archaeon Pyrococcus furiosus: implications for the targeting step at the membrane. PLoS ONE 3(11):e3619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Focia PJ, Shepotinovskaya IV, Seidler JA, Freymann DM (2004) Heterodimeric GTPase core of the SRP targeting complex. Science 303(5656):373–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Freymann DM, Keenan RJ, Stroud RM, Walter P (1997) Structure of the conserved GTPase domain of the signal recognition particle. Nature 385(6614):361–364

    Article  CAS  PubMed  Google Scholar 

  28. Gierasch LM (1989) Signal sequences. Biochemistry 28(3):923–930

    Article  CAS  PubMed  Google Scholar 

  29. Gorlich D, Hartmann E, Prehn S, Rapoport TA (1992) A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature 357(6373):47–52

    Article  CAS  PubMed  Google Scholar 

  30. Groussin M, Gouy M (2011) Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea. Mol Biol Evol 28(9):2661–2674

    Article  CAS  PubMed  Google Scholar 

  31. Grudnik P, Bange G, Sinning I (2009) Protein targeting by the signal recognition particle. Biol Chem 390(8):775–782

    Article  CAS  PubMed  Google Scholar 

  32. Haddad A, Rose RW, Pohlschroder M (2005) The Haloferax volcanii FtsY homolog is critical for haloarchaeal growth but does not require the A domain. J Bacteriol 187(12):4015–4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hainzl T, Huang SH, Sauer-Eriksson AE (2002) Structure of the SRP19-RNA complex and implications for signal recognition particle assembly. Nature 417(6890):767–771

    Article  CAS  PubMed  Google Scholar 

  34. Hainzl T, Huang SH, Sauer-Eriksson AE (2007) Interaction of signal-recognition particle 54 GTPase domain and signal-recognition particle RNA in the free signal-recognition particle. Proc Natl Acad Sci USA 104(38):14911–14916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hainzl T, Huang SH, Sauer-Eriksson AE (2005) Structural insights into SRP RNA: an induced fit mechanism for SRP assembly. RNA 11(7):1043–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hainzl T, Sauer-Eriksson AE (2015) Signal-sequence induced conformational changes in the signal recognition particle. Nat Commun 6:7163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Halic M, Becker T, Pool MR, Spahn CM, Grassucci RA, Frank J et al (2004) Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427(6977):808–814

    Article  CAS  PubMed  Google Scholar 

  38. Hand NJ, Klein R, Laskewitz A, Pohlschroder M (2006) Archaeal and bacterial SecD and SecF homologs exhibit striking structural and functional conservation. J Bacteriol 188(4):1251–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haney PJ, Stees M, Konisky J (1999) Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus. J Biol Chem 274(40):28453–28458

    Article  CAS  PubMed  Google Scholar 

  40. Hartmann E, Sommer T, Prehn S, Gorlich D, Jentsch S, Rapoport TA (1994) Evolutionary conservation of components of the protein translocation complex. Nature 367(6464):654–657

    Article  CAS  PubMed  Google Scholar 

  41. Herskovits AA, Seluanov A, Rajsbaum R, ten Hagen-Jongman CM, Henrichs T, Bochkareva ES et al (2001) Evidence for coupling of membrane targeting and function of the signal recognition particle (SRP) receptor FtsY. EMBO Rep 2(11):1040–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hileman TH, Santangelo TJ (2012) Genetics techniques for Thermococcus kodakarensis. Front Microbiol 3:195

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ilangovan U, Bhuiyan SH, Hinck CS, Hoyle JT, Pakhomova ON, Zwieb C et al (2008) A. fulgidus SRP54 M-domain. J Biomol NMR 41(4):241–248

    Article  CAS  PubMed  Google Scholar 

  44. Irihimovitch V, Eichler J (2003) Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii. J Biol Chem 278(15):12881–12887

    Article  CAS  PubMed  Google Scholar 

  45. Jagath JR, Rodnina MV, Wintermeyer WG (2000) Conformational changes in the bacterial SRP receptor FtsY upon binding of guanine nucleotides and SRP. J Mol Biol 295(4):745–753

    Article  CAS  PubMed  Google Scholar 

  46. Janda CY, Li J, Oubridge C, Hernandez H, Robinson CV, Nagai K (2010) Recognition of a signal peptide by the signal recognition particle. Nature 465(7297):507–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jomaa A, Boehringer D, Leibundgut M, Ban N (2016) Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat Commun 7:10471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755–775

    Article  CAS  PubMed  Google Scholar 

  49. Keenan RJ, Freymann DM, Walter P, Stroud RM (1998) Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94(2):181–191

    Article  CAS  PubMed  Google Scholar 

  50. Kempf G, Wild K, Sinning I (2014) Structure of the complete bacterial SRP Alu domain. Nucl Acids Res 42(19):12284–12294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koch HG, Moser M, Muller M (2003) Signal recognition particle-dependent protein targeting, universal to all kingdoms of life. Rev Physiol Biochem Pharmacol 146(146):55–94

    Article  CAS  PubMed  Google Scholar 

  52. Kohler PR, Metcalf WW (2012) Genetic manipulation of Methanosarcina spp. Front Microbiol 3:259

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kuglstatter A, Oubridge C, Nagai K (2002) Induced structural changes of 7SL RNA during the assembly of human signal recognition particle. Nat Struct Biol 9(10):740–744

    Article  CAS  PubMed  Google Scholar 

  54. Kuhn P, Draycheva A, Vogt A, Petriman NA, Sturm L, Drepper F et al (2015) Ribosome binding induces repositioning of the signal recognition particle receptor on the translocon. J Cell Biol 211(1):91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kumazaki K, Kishimoto T, Furukawa A, Mori H, Tanaka Y, Dohmae N et al (2014) Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci Rep 4:7299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lakomek NA, Draycheva A, Bornemann T, Wintermeyer W (2016) Electrostatics and intrinsic disorder drive translocon binding of the SRP receptor FtsY. Angew Chem 55(33):9544–9547

    Article  CAS  Google Scholar 

  57. Lau KF, Dill KA (1990) Theory for protein mutability and biogenesis. Proc Natl Acad Sci USA 87(2):638–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leigh JA, Albers SV, Atomi H, Allers T (2011) Model organisms for genetics in the domain Archaea: methanogens, halophiles, thermococcales and sulfolobales. FEMS Microbiol Rev 35(4):577–608

    Article  CAS  PubMed  Google Scholar 

  59. Lichi T, Ring G, Eichler J (2004) Membrane binding of SRP pathway components in the halophilic archaea Haloferax volcanii. Eur J Biochem 271(7):1382–1390

    Article  CAS  PubMed  Google Scholar 

  60. Luirink J, Samuelsson T, de Gier JW (2001) YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly. FEBS Lett 501(1):1–5

    Article  CAS  PubMed  Google Scholar 

  61. Luirink J, Sinning I (2004) SRP-mediated protein targeting: structure and function revisited. BBA Mol Cell Res 1694(1–3):17–35

    CAS  Google Scholar 

  62. Maeshima H, Okuno E, Aimi T, Morinaga T, Itoh T (2001) An archaeal protein homologous to mammalian SRP54 and bacterial Ffh recognizes a highly conserved region of SRP RNA. FEBS Lett 507(3):336–340

    Article  CAS  PubMed  Google Scholar 

  63. Matlack KE, Mothes W, Rapoport TA (1998) Protein translocation: tunnel vision. Cell 92(3):381–390

    Article  CAS  PubMed  Google Scholar 

  64. Miller JD, Bernstein HD, Walter P (1994) Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 367(6464):657–659

    Article  CAS  PubMed  Google Scholar 

  65. Miralles F (2011) Compositional and structural features related to thermal stability in the archaea SRP19 and SRP54 signal recognition particle proteins. J Mol Evol 72(5–6):450–465

    Article  CAS  PubMed  Google Scholar 

  66. Mizuguchi K, Sele M, Cubellis MV (2007) Environment specific substitution tables for thermophilic proteins. BMC Bioinform 8(Suppl 1):S15

    Article  CAS  Google Scholar 

  67. Moll R, Schmidtke S, Schafer G (1999) Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens ffh-homologous protein suggest an SRP-like complex in archaea. Eur J Biochem 259(1–2):441–448

    Article  CAS  PubMed  Google Scholar 

  68. Montoya G, Kaat K, Moll R, Schafer G, Sinning I (2000) The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP-SRP receptor complex. Structure 8(5):515–525

    Article  CAS  PubMed  Google Scholar 

  69. Montoya G, Svensson C, Luirink J, Sinning I (1997) Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385(6614):365–368

    Article  CAS  PubMed  Google Scholar 

  70. Moser C, Mol O, Goody RS, Sinning I (1997) The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain. Proc Natl Acad Sci USA 94(21):11339–11344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nagai K, Oubridge C, Kuglstatter A, Menichelli E, Isel C, Jovine L (2003) Structure, function and evolution of the signal recognition particle. EMBO J 22(14):3479–3485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakashima H, Fukuchi S, Nishikawa K (2003) Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. J Biochem 133(4):507–513

    Article  CAS  PubMed  Google Scholar 

  73. Newitt JA, Bernstein HD (1997) The N-domain of the signal recognition particle 54-kDa subunit promotes efficient signal sequence binding. Eur J Biochem 245(3):720–729

    Article  CAS  PubMed  Google Scholar 

  74. Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci USA 98(9):4899–4903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Noriega TR, Chen J, Walter P, Puglisi JD (2014) Real-time observation of signal recognition particle binding to actively translating ribosomes. Elife 3:e04418

    Article  PubMed Central  Google Scholar 

  76. Noriega TR, Tsai A, Elvekrog MM, Petrov A, Neher SB, Chen J et al (2014) Signal recognition particle-ribosome binding is sensitive to nascent chain length. J Biol Chem 289(28):19294–19305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ortenberg R, Mevarech M (2000) Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii. J Biol Chem 275(30):22839–22846

    Article  CAS  PubMed  Google Scholar 

  78. Pakhomova ON, Deep S, Huang Q, Zwieb C, Hinck AP (2002) Solution structure of protein SRP19 of Archaeoglobus fulgidus signal recognition particle. J Mol Biol 317(1):145–158

    Article  CAS  PubMed  Google Scholar 

  79. Plagens A, Daume M, Wiegel J, Randau L (2015) Circularization restores signal recognition particle RNA functionality in Thermoproteus. Elife 4:e11623

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pohlschroder M, Hartmann E, Hand NJ, Dilks K, Haddad A (2005) Diversity and evolution of protein translocation. Annu Rev Microbiol 59:91–111

    Article  CAS  PubMed  Google Scholar 

  81. Pohlschroder M, Prinz WA, Hartmann E, Beckwith J (1997) Protein translocation in the three domains of life: variations on a theme. Cell 91(5):563–566

    Article  CAS  PubMed  Google Scholar 

  82. Powers T, Walter P (1995) Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 269(5229):1422–1424

    Article  CAS  PubMed  Google Scholar 

  83. Rensing SA, Maier UG (1994) The SecY protein family: comparative analysis and phylogenetic relationships. Mol Phylogenet Evol 3(3):187–191

    Article  CAS  PubMed  Google Scholar 

  84. Romisch K, Webb J, Herz J, Prehn S, Frank R, Vingron M et al (1989) Homology of 54 K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains. Nature 340(6233):478–482

    Article  CAS  PubMed  Google Scholar 

  85. Rose RW, Pohlschroder M (2002) In vivo analysis of an essential archaeal signal recognition particle in its native host. J Bacteriol 184(12):3260–3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosendal KR, Sinning I, Wild K (2004) Crystallization of the crenarchaeal SRP core. Acta Crystallogr D 60(Pt 1):140–143

    Article  PubMed  CAS  Google Scholar 

  87. Rosendal KR, Wild K, Montoya G, Sinning I (2003) Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication. Proc Natl Acad Sci USA 100(25):14701–14706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Samuelson JC, Chen M, Jiang F, Moller I, Wiedmann M, Kuhn A et al (2000) YidC mediates membrane protein insertion in bacteria. Nature 406(6796):637–641

    Article  CAS  PubMed  Google Scholar 

  89. Scotti PA, Urbanus ML, Brunner J, de Gier JW, von Heijne G, van der Does C et al (2000) YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J 19(4):542–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Seitl I, Wickles S, Beckmann R, Kuhn A, Kiefer D (2014) The C-terminal regions of YidC from Rhodopirellula baltica and Oceanicaulis alexandrii bind to ribosomes and partially substitute for SRP receptor function in Escherichia coli. Mol Microbiol 91(2):408–421

    Article  CAS  PubMed  Google Scholar 

  91. Shen K, Arslan S, Akopian D, Ha T, Shan SO (2012) Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492(7428):271–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shen K, Wang YQ, Fu YHH, Zhang Q, Feigon J, Shan SO (2013) Molecular mechanism of GTPase activation at the signal recognition particle (SRP) RNA distal end. J Biol Chem 288(51):36385–36397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Soppa J (2006) From genomes to function: haloarchaea as model organisms. Microbiology 152(Pt 3):585–590

    Article  CAS  PubMed  Google Scholar 

  94. Soppa J (2014) Polyploidy in archaea and bacteria: about desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. J Mol Microbiol Biotechnol 24(5–6):409–419

    CAS  PubMed  Google Scholar 

  95. Soppa J (2013) Evolutionary advantages of polyploidy in halophilic archaea. Biochem Soc Trans 41(1):339–343

    Article  CAS  PubMed  Google Scholar 

  96. Stjepanovic G, Kapp K, Bange G, Graf C, Parlitz R, Wild K et al (2011) Lipids trigger a conformational switch that regulates signal recognition particle (SRP)-mediated protein targeting. J Biol Chem 286(26):23489–23497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tozik I, Huang Q, Zwieb C, Eichler J (2002) Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii. Nucl Acids Res 30(19):4166–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ulbrandt ND, Newitt JA, Bernstein HD (1997) The E-coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88(2):187–196

    Article  CAS  PubMed  Google Scholar 

  99. Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC et al (2004) X-ray structure of a protein-conducting channel. Nature 427(6969):36–44

    Article  PubMed  CAS  Google Scholar 

  100. von Loeffelholz O, Jiang Q, Ariosa A, Karuppasamy M, Huard K, Berger I et al (2015) Ribosome-SRP-FtsY cotranslational targeting complex in the closed state. Proc Natl Acad Sci USA 112(13):3943–3948

    Article  CAS  Google Scholar 

  101. Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, Reimann J et al (2012) Versatile genetic tool box for the Crenarchaeote Sulfolobus acidocaldarius. Front Microbiol 3:214

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wild K, Bange G, Bozkurt G, Segnitz B, Hendricks A, Sinning I (2010) Structural insights into the assembly of the human and archaeal signal recognition particles. Acta Crystallogr Sect D 66:295–303

    Article  CAS  Google Scholar 

  103. Wild K, Bange G, Motiejunas D, Kribelbauer J, Hendricks A, Segnitz B et al (2016) Structural basis for conserved regulation and adaptation of the signal recognition particle targeting complex. J Mol Biol 428(14):2880–2897

    Article  CAS  PubMed  Google Scholar 

  104. Wild K, Sinning I, Cusack S (2001) Crystal structure of an early protein-RNA assembly complex of the signal recognition particle. Science 294(5542):598–601

    Article  CAS  PubMed  Google Scholar 

  105. Yin J, Huang Q, Pakhomova ON, Hinck AP, Zwieb C (2004) The conserved adenosine in helix 6 of Archaeoglobus fulgidus signal recognition particle RNA initiates SRP assembly. Archaea 1(4):269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yurist S, Dahan I, Eichler J (2007) SRP19 is a dispensable component of the signal recognition particle in Archaea. J Bacteriol 189(1):276–279

    Article  CAS  PubMed  Google Scholar 

  107. Zerulla K, Soppa J (2014) Polyploidy in haloarchaea: advantages for growth and survival. Front Microbiol 5:274

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang YJ, Tian HF, Wen JF (2009) The evolution of YidC/Oxa/Alb3 family in the three domains of life: a phylogenomic analysis. BMC Evol Biol 9:137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zwieb C, Bhuiyan S (2010) Archaea signal recognition particle shows the way. Archaea. doi:10.1155/2010/485051

    PubMed  PubMed Central  Google Scholar 

  110. Zwieb C, Eichler J (2002) Getting on target: the archaeal signal recognition particle. Archaea 1(1):27–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the SERB (Science and Engineering Research Board), Department of Science and Technology (DST), New Delhi, India for providing Ramanujan Fellowship (SR/S2/RJN-106/2012) to AG. SG is supported by Council of Scientific and Industrial Research (CSIR), Government of India, and MR is supported by a fellowship from UGC (University Grant Commission), Government of India [Ref. No. 22/06/2014(i)EU-V dtd. 04.12.2014]. The authors wish to thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhrajyoti Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Roy, M. & Ghosh, A. The Archaeal Signal Recognition Particle: Present Understanding and Future Perspective. Curr Microbiol 74, 284–297 (2017). https://doi.org/10.1007/s00284-016-1167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1167-9

Keywords

Navigation