Skip to main content

Thalassiella azotovora gen. nov., sp. nov., a New Member of the Family Kineosporiaceae Isolated from Sea Water in South Korea

Abstract

A gram-positive, nonmotile, rod-shaped, nonflagellated, aerobic bacterium, designated strain DSD2T was isolated from a seawater sample from Sadong wharf, Ulleung-Island, South Korea. Strain DSD2T was found to be able to grow at pH ranging from 6 to 11 (optimum 7–8), 0–7 % (w/v) NaCl (optimum 0 %), at 10–42 °C (optimum 37 °C). 16S rRNA gene sequence analysis revealed that strain DSD2T was 95.8 % similar to the type strain of Kineosporia rhamnosa KACC 15195T, 95.8 % similar to Angustibacter aerolatus KACC 15527T, and 95.5 % similar to Kineococcus xinjiangensis KCTC 19474T as its closest relatives. A neighbor-joining phylogenetic tree based on the 16S rRNA gene sequence showed that strain DSD2T related to Micrococcineae and Kineosporiineae suborder clade. The major polar lipids were phosphoglycolipids and phospholipids. Strain DSD2T was found to contain MK-8 (H2) and MK-9 (H4) as the predominant menaquinone and iso-C16:0 as the major fatty acid. The isolate contained meso-diaminopimelic acid (meso-A2pm) with alanine, glutamic acid, and glycine as the diagnostic diamino acid. The DNA G+C content of strain DSD2T was 73.2 mol%. On the basis of phylogenetic, biochemical, chemotaxonomic, and other physiological characteristics, strain DSD2T is assigned to a novel species of a novel genus within the suborder Kineosporiineae and the name Thalassiella azotovora gen nov., sp. nov., is proposed. The type strain is DSD2T (= KCTC 39634T = JCM 31134T).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Akira Y, Tomohiko T, Tadashi N, Toru H (1993) Kineococcus aurantiacus gen. nov., sp. nov., a new aerobic, gram-positive, motile coccus with meso-diaminopimelic acid and arabinogalactan in the cell wall. Int J Syst Evol Microbiol 43:52–57

    Google Scholar 

  2. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45:316–354

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Duangmal K, Thamchaipenet A, Ara I, Matsumoto A, Takahashi Y (2008) Kineococcus gynurae sp. nov., isolated from a Thai medicinal plant. Int J Syst Evol Microbiol 58:2439–2442

    CAS  Article  PubMed  Google Scholar 

  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  6. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  7. Gonzalez JM, Saiz-Jimenez C (2002) A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773

    CAS  Article  PubMed  Google Scholar 

  8. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  9. Hamada M, Otoguro M, Yamamura H, Tamura T, Suzuki K, Hayakawa M (2010) Luteimicrobium subarcticum gen. nov., sp. nov., a new member of the suborder Micrococcineae. Int J Syst Evol Microbiol 60:796–800

    Article  PubMed  Google Scholar 

  10. Hamada M, Tamura T, Shibata C, Yamamura H, Hayakawa M, Suzuki K (2012) Sediminihabitans luteus gen. nov., sp. nov., a new member of the family Cellulomonadaceae isolated from sea sediment. Antonie Van Leeuwenhoek 102:325–333

    CAS  Article  PubMed  Google Scholar 

  11. Hamada M, Yamamura H, Komukai C, Tamura T, Suzuki K, Hayakawa M (2012) Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot (Tokyo) 65:427–431

    CAS  Article  Google Scholar 

  12. Busse HJ, Denner EBM, Lubitz W (1996) Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. J Biotechnol 47:3–38

    CAS  Article  PubMed  Google Scholar 

  13. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    CAS  Article  Google Scholar 

  14. Itoh T, Kudo T, Parenti F, Seino A (1989) Amended description of the genus Kineosporia, based on chemotaxonomic and morphological studies. Int J Syst Evol Microbiol 39:168–173

    Google Scholar 

  15. Jones BE, Grant WD, Duckworth AW, Schumann P, Weiss N, Stackebrandt E (2005) Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonad. Int J Syst Evol Microbiol 55:1711–1714

    CAS  Article  PubMed  Google Scholar 

  16. Kim H, Oh HW, Kim JA, Park DS, Park HM, Bae KS (2014) Luteimicrobium xylanilyticum sp. nov., isolated from the gut of a long-horned beetle, Massicus raddei. Int J Syst Evol Microbiol 64:1401–1405

    CAS  Article  PubMed  Google Scholar 

  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    CAS  Article  PubMed  Google Scholar 

  18. Kim SJ, Jang YH, Hamada M, Tamura T, Ahn JH, Weon HY, Suzuki K, Kwon SW (2013) Angustibacter aerolatus sp. nov., isolated from air. Int J Syst Evol Microbiol 63:610–615

    CAS  Article  PubMed  Google Scholar 

  19. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  Article  PubMed  Google Scholar 

  20. Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–205

    CAS  Article  Google Scholar 

  21. Kudo T, Matsushima K, Itoh T, Sasaki J, Suzuki K (1978) Kineosporia, a new genus of the order Actinomycetales. Int J Syst Bacteriol 28:401–406

    Article  Google Scholar 

  22. Kudo T, Matsushima K, Itoh T, Sasaki J, Suzuki K (1998) Description of four new species of the genus Kineosporia: kineosporia succinea sp. nov., Kineosporia rhizophila sp. nov., Kineosporia mikuniensis sp. nov. and Kineosporia rhamnosa sp. nov., isolated from plant samples, and amended description of the genus Kineosporia. Int J Syst Evol Microbiol 48:1245–1255

    CAS  Google Scholar 

  23. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 38:358–361

    CAS  Google Scholar 

  24. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    CAS  Article  PubMed  Google Scholar 

  25. Lee CM, Weon HY, Hong SB, Jeon YA, Schumann P, Kroppenstedt RM, Kwon SW, Stackebrandt E (2008) Cellulomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58:2925–2929

    CAS  Article  PubMed  Google Scholar 

  26. Lee SD (2006) Kineococcus marinus sp. nov., isolated from marine sediment of the coast of Jeju. Korea. Int J Syst Evol Microbiol 56:1279–1283

    CAS  Article  PubMed  Google Scholar 

  27. Lee SD (2013) Angustibacter peucedani sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 63:744–750

    CAS  Article  PubMed  Google Scholar 

  28. Li J, Zhao GZ, Huang HY, Qin S, Zhu WY, Xu LH, Li WJ (2009) Kineosporia mesophila sp. nov., isolated from surface-sterilized stems of Tripterygium wilfordii. Int J Syst Evol Microbiol 59:3150–3154

    CAS  Article  PubMed  Google Scholar 

  29. Liu M, Peng F, Wang Y, Zhang K, Chen G, Fang C (2009) Kineococcus xinjiangensis sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 59:1090–1093

    CAS  Article  PubMed  Google Scholar 

  30. Li Y, Chen F, Dong K, Wang G (2013) Actinotalea ferrariae sp. nov., isolated from an iron mine, and emended description of the genus Actinotalea. Int J Syst Evol Microbiol 63:3398–3403

    CAS  Article  PubMed  Google Scholar 

  31. Maszenan AM, Tay JH, Schumann P, Jiang HL, Tay ST (2005) Quadrisphaera granulorum gen. nov., sp. nov., a gram positive polyphosphate-accumulating coccus in tetrads or aggregates isolated from aerobic granules. Int J Syst Evol Microbiol 55:1771–1777

    CAS  Article  PubMed  Google Scholar 

  32. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    CAS  Article  Google Scholar 

  33. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  34. Sakiyama Y, Thao NK, Giang NM, Miyadoh S, Hop DV, Ando K (2009) Kineosporia babensis sp. nov., isolated from plant litter in Vietnam. Int J Syst Evol Microbiol 59:550–554

    CAS  Article  PubMed  Google Scholar 

  35. Schumann P, Weiss N, Stackebrandt E (2001) Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol 51:1007–1010

    CAS  Article  PubMed  Google Scholar 

  36. Shi Z, Luo G, Wang G (2012) Cellulomonas carbonis sp. nov., isolated from coal mine soil. Int J Syst Evol Microbiol 62:2004–2010

    CAS  Article  PubMed  Google Scholar 

  37. Sonesson A, Larsson L, Fox A, Westerdahl G, Odarm G (1988) Determination of enviromental levels of peptidoglycan and lipopolysaccharide using gas chromatography with negative-ion chemical-ionization mass spectrometry utilizing bacteria amino acids and hydroxy fatty acids as biomarkers. J Chromatogr 431:1–15

    CAS  Article  PubMed  Google Scholar 

  38. Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  39. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Tamura T, Ishida Y, Otoguro M, Yamamura H, Hayakawa M, Suzuki K (2010) Angustibacter luteus gen. nov., sp. nov., isolated from subarctic forest soil. Int J Syst Bacteriol 60:2441–2445

    CAS  Article  Google Scholar 

  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yi H, Schumann P, Chun J et al (2007) Demequina aestuarii gen. nov., sp. nov., a novel actinomycete of the suborder Micrococcineae, and reclassification of Cellulomonas fermentans Bagnara,1985 as Actinotalea fermentans gen. nov., comb. nov. Int J Syst Evol Microbiol 57:151–156

    CAS  Article  PubMed  Google Scholar 

  44. Zhao S, Li L, Li SH, Wang HF, Hozzein WN, Zhang YG, Wadaan MA, Li WJ, Tian CY (2015) Actinotalea suaedae sp. nov., isolated from the halophyte Suaeda physophora in Xinjiang N.W. China. Antonie Van Leeuwenhoek 107:1–7

    CAS  Article  PubMed  Google Scholar 

  45. Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institute of Environmental Research, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taegun Seo.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

The NCBI GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequences of strain DSD2T is KT630890.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 462 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Jang, J.H., Cha, S. et al. Thalassiella azotovora gen. nov., sp. nov., a New Member of the Family Kineosporiaceae Isolated from Sea Water in South Korea. Curr Microbiol 73, 676–683 (2016). https://doi.org/10.1007/s00284-016-1112-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1112-y

Keywords

  • Wharf
  • Micrococcus Luteus
  • Itaconate
  • Cellulomonas
  • Major Polar Lipid