Use of In Vitro Transcription System for Analysis of Corynebacterium glutamicum Promoters Recognized by Two Sigma Factors


Promoter activities in Corynebacterium glutamicum strains with deletions of genes encoding sigma factors of RNA polymerase suggested that transcription from some promoters is controlled by two sigma factors. To prove that different sigma factors are involved in the recognition of selected Corynebacterium glutamicum promoters, in vitro transcription system was applied. It was found that a typical housekeeping promoter Pper interacts with the alternative sigma factor σB in addition to the primary sigma factor σA. On the other way round, the σB-dependent promoter of the pqo gene that is expressed mainly in the stationary growth phase was active also with σA. Some promoters of genes involved in stress responses (P1clgR, P2dnaK, and P2dnaJ2) were found to be recognized by two stress-responding sigma factors, σH and σE. In vitro transcription system thus proved to be a useful direct technique for demonstrating the overlap of different sigma factors in recognition of individual promoters in C. glutamicum.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Barreiro C, Gonzalez-Lavado E, Pátek M, Martín JF (2004) Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum: characterization of heat shock-induced promoters. J Bacteriol 186:4813–4817

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Busche T, Šilar R, Pičmanová M, Pátek M, Kalinowski J (2012) Transcriptional regulation of the operon encoding stress-responsive ECF sigma factor SigH and its anti-sigma factor RshA and control of its regulatory network in Corynebacterium glutamicum. BMC Genom 13:445

    CAS  Article  Google Scholar 

  3. 3.

    Dainese E, Rodrigue S, Delogu G, Provvedi R, Laflamme L, Brzezinski R, Fadda G et al (2006) Posttranslational regulation of Mycobacterium tuberculosis extracytoplasmic-function sigma factor σL and roles in virulence and in global regulation of gene expression. Infect Immun 74:2457–2461

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Ehira S, Shirai T, Teramoto H, Inui M, Yukawa H (2008) Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl Environ Microbiol 74:5146–5152

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ehira S, Teramoto H, Inui M, Yukawa H (2009) Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol 191:2964–2972

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Engels S, Schweitzer JE, Ludwig C, Bott M, Schaffer S (2004) clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Mol Microbiol 52:285–302

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning. A practical approach, vol 1. IRL, Oxford, pp 109–135

    Google Scholar 

  8. 8.

    Holátko J, Šilar R, Rabatinová A, Šanderová H, Halada P, Nešvera J, Krásný L, Pátek M (2012) Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes. Appl Microbiol Biotechnol 96:521–529

    Article  PubMed  Google Scholar 

  9. 9.

    Knoppová M, Phensaijai M, Veselý M, Zemanová M, Nešvera J, Pátek M (2007) Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis. Curr Microbiol 55:234–239

    Article  PubMed  Google Scholar 

  10. 10.

    Larisch C, Nakunst D, Hüser AT, Tauch A, Kalinowski J (2007) The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genom 8:4

    Article  Google Scholar 

  11. 11.

    Luo Y, Helmann JD (2009) Extracytoplasmic function σ factors with overlapping promoter specificity regulate sublancin production in Bacillus subtilis. J Bacteriol 191:4951–4958

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Nakunst D, Larisch C, Hüser AT, Tauch A, Pühler A, Kalinowski J (2007) The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J Bacteriol 189:4696–4707

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Nešvera J, Pátek M, Hochmannová J, Abrhámová Z, Bečvářová V, Jelínková M, Vohradský J (1997) Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 179:1525–1532

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Olvera L, Mendoza-Vargas A, Flores N, Olvera M, Sigala JC, Gosset G, Morett E, Bolívar F (2009) Transcription analysis of central metabolism genes in Escherichia coli. Possible roles of σ38 in their expression, as a response to carbon limitation. PLoS ONE 4:e7466

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Park SD, Youn JW, Kim YJ, Lee SM, Kim Y, Lee HS (2008) Corynebacterium glutamicum σE is involved in responses to cell surface stresses and its activity is controlled by the anti-σ factor CseE. Microbiology 154:915–923

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Pátek M, Nešvera J (2011) Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol 154:101–132

    Article  PubMed  Google Scholar 

  17. 17.

    Pátek M, Nešvera J (2013) Promoters and plasmid vectors of Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum. Microbiology Monographs, Springer Verlag, pp 51–88

    Google Scholar 

  18. 18.

    Qiu J, Helmann JD (2001) The -10 region is a key promoter specificity determinant for the Bacillus subtilis extracytoplasmic-function σ factors σX and σW. J Bacteriol 183:1921–1927

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ross W, Thompson JF, Newlands JT, Gourse RL (1990) E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J 9:3733–3742

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sambrook J, Russel DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  21. 21.

    Schreiner ME, Riedel C, Holátko J, Pátek M, Eikmanns BJ (2006) Pyruvate:quinone oxidoreductase in Corynebacterium glutamicum: molecular analysis of the pqo gene, significance of the enzyme, and phylogenetic aspects. J Bacteriol 188:1341–1350

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Schröder J, Tauch A (2010) Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 34:685–737

    Article  PubMed  Google Scholar 

  23. 23.

    Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Toyoda K, Inui M (2016) The extracytoplasmic function σ factor σC regulates expression of a branched quinol oxidation pathway in Corynebacterium glutamicum. Mol Microbiol 100:486–509

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  PubMed  Google Scholar 

  26. 26.

    Wade JT, Roa DC, Grainger DC, Hurd D, Busby SJW, Struhl K, Nudler E (2006) Extensive functional overlap between σ factors in Escherichia coli. Nat Struct Mol Biol 13:806–814

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Zemanová M, Kadeřábková P, Pátek M, Knoppová M, Šilar R, Nešvera J (2008) Chromosomally encoded small antisense RNA in Corynebacterium glutamicum. FEMS Microbiol Lett 279:195–201

    Article  PubMed  Google Scholar 

Download references


This work was supported by institutional research concept RVO61388971 (Institute of Microbiology CAS).

Author information



Corresponding author

Correspondence to Jan Nešvera.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šilar, R., Holátko, J., Rucká, L. et al. Use of In Vitro Transcription System for Analysis of Corynebacterium glutamicum Promoters Recognized by Two Sigma Factors. Curr Microbiol 73, 401–408 (2016).

Download citation


  • Sigma Factor
  • Stationary Growth Phase
  • Corynebacterium Glutamicum
  • Transcription Assay
  • Alternative Sigma Factor