Current Microbiology

, Volume 73, Issue 1, pp 38–45 | Cite as

Defects in Protein Folding Machinery Affect Cell Wall Integrity and Reduce Ethanol Tolerance in S. cerevisiae

  • Aswathy Narayanan
  • Dileep Pullepu
  • Praveen Kumar Reddy
  • Wasim Uddin
  • M. Anaul KabirEmail author


The chaperonin complex CCT/TRiC (chaperonin containing TCP-1/TCP-1 ring complex) participates in the folding of many crucial proteins including actin and tubulin in eukaryotes. Mutations in genes encoding its subunits can affect protein folding and in turn, the physiology of the organism. Stress response in Saccharomyces cerevisiae is important in fermentation reactions and operates through overexpression and underexpression of genes, thus altering the protein profile. Defective protein folding machinery can disturb this process. In this study, the response of cct mutants to stress conditions in general and ethanol in specific was investigated. CCT1 mutants showed decreased resistance to different conditions tested including osmotic stress, metal ions, surfactants, reducing and oxidising agents. Cct1-3 mutant with the mutation in the conserved ATP-binding region showed irreversible defects than other mutants. These mutants were found to have inherent cell wall defects and showed decreased ethanol tolerance. This study reveals that cell wall defects and ethanol sensitivity are linked. Genetic and proteomic analyses showed that the yeast genes RPS6A (ribosomal protein), SCL1 (proteasomal subunit) and TDH3 (glyceraldehyde-3-phosphate dehydrogenase) on overexpression, improved the growth of cct1-3 mutant on ethanol. We propose the breakdown of common stress response pathways caused by mutations in CCT complex and the resulting scarcity of functional stress-responsive proteins, affecting the cell’s defence against different stress agents in cct mutants. Defective cytoskeleton and perturbed cell wall integrity reduce the ethanol tolerance in the mutants which are rescued by the extragenic suppressors.


Ethanol Tolerance Stress Agent Cell Wall Integrity Ethanol Stress Ethanol Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by Council of Scientific and Industrial Research (CSIR) grant (No: 37(1571)/12/EMRII). We thank D. G. Drubin (University of California, USA), T. C. Huffaker (Cornell University, Ithaca, NY) and M.R. Culbertson (University of Wisconsin, USA) for providing the mutant strains. We are also grateful to Fred Sherman, University of Rochester, USA and P. Jayadeva Bhat, IIT Bombay, India for the plasmids.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they do not have any conflict of interest.


  1. 1.
    Aguilera A, Benitez T (1986) Ethanol-sensitive mutants of Saccharomyces cerevisiae. Arch Microbiol 143:337–344CrossRefPubMedGoogle Scholar
  2. 2.
    Alexandre H, Rousseaux I, Charpentier C (1993) Ethanol adaptation mechanism in Saccharomyces cerevisiae. Biotecnol Appl Biocem 20:173–183Google Scholar
  3. 3.
    Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103CrossRefPubMedGoogle Scholar
  4. 4.
    Ayer A, Fellermeier S, Fife C, Li SS, Smits G, Meyer AJ, Dawes IW, Perrone GG (2012) A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis. PLoS One 7:e44278CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Botstein D, Falco SC, Stewart SE, Brennan M et al (1979) Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene 8:17–24CrossRefPubMedGoogle Scholar
  6. 6.
    Cartwright CP, Juroszek J, Beavan MJ, Ruby FMS, De Morais SMF, Rose AH (1986) Ethanol dissipates the proton-motive force across the plasma membrane of Saccharomyces cerevisiae. J Gen Microbiol 137:369–377Google Scholar
  7. 7.
    Castells-Roca L, Garcıa-Martınez J, Moreno J, Herrero E, Bellı G, Pérez-Ortín JE (2011) Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities. PLoS One 6:e17272CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chee MK, Haase SB (2012) New and redesigned pRS plasmid shuttle vectors for genetic manipulation of Saccharomyces cerevisiae. G3 (Bethesda) 2:515–526CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Chen X, Sullivan DS, Huffaker TC (1994) Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci USA 91:9111–9115CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Delgado ML, Gil ML, Gozalbo D (2003) Starvation and temperature upshift cause an increase in the enzymatically active cell wall-associated glyceraldehyde-3-phosphate dehydrogenase protein in yeast. FEMS Yeast Res 4:297–303CrossRefPubMedGoogle Scholar
  11. 11.
    Dekker C, Stirling PC, McCormack EA, Filmore H, Paul A, Brost RL, Costanzo M, Boone C, Leroux MR, Willison KR (2008) The interaction network of the chaperonin CCT. EMBO J 27:1827–1839CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Flattery-O’Brien J, Collinson LP, Dawes IW (1993) Saccharomyces cerevisiae has an inducible response to menadione which differs from that to hydrogen peroxide. J Gen Microbiol 139:501–507CrossRefPubMedGoogle Scholar
  13. 13.
    Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647CrossRefPubMedGoogle Scholar
  14. 14.
    Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6:744–750CrossRefPubMedGoogle Scholar
  15. 15.
    Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Huffer S, Clark ME, Ning JC, Blanch HW, Clark DS (2011) Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea. Appl Environ Microbiol 77:6400–6408CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ibeas JI, Jimenez J (1997) Mitochondrial DNA loss caused by ethanol in Saccharomyces cerevisiae. Appl Environ Microbiol 63:7–12PubMedPubMedCentralGoogle Scholar
  18. 18.
    Igual JC, Johnson AL, Johnston LH (1996) Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J 15:5001–5013PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kabir MA, Sherman F (2008) Overexpressed ribosomal proteins suppress defective chaperonins in Saccharomyces cerevisiae. FEMS Yeast Res 8:1236–1244CrossRefPubMedGoogle Scholar
  20. 20.
    Kopecká M, Gabriel M (1992) The influence of congo red on the cell wall and (1—3)-beta-D-glucan microfibril biogenesis in Saccharomyces cerevisiae. Arch Microbiol 158:115–126CrossRefPubMedGoogle Scholar
  21. 21.
    Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A, Mizunuma M, Miyakawa T, Shimoi H et al (2004) Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem 68:968–972CrossRefPubMedGoogle Scholar
  22. 22.
    Lin P, Cardillo TS, Richard LM, Segel GB, Sherman F (1997) Analysis of mutationally altered forms of the Cct6 subunits of the chaperonin from Saccharomyces cerevisiae. Genetics 147:1609–1633PubMedPubMedCentralGoogle Scholar
  23. 23.
    Lucero P, Peñalver E, Moreno E, Lagunas R (2000) Internal trehalose protects endocytosis from inhibition by ethanol in Saccharomyces cerevisiae. Appl Environ Microbiol 66:4456–4461CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Millar DG, Griffith-Smith K, Algar E, Scopes RK (1982) Activity and stability of glycolytic enzymes in the presence of ethanol. Biotechnol Lett 4:601–606CrossRefGoogle Scholar
  25. 25.
    Mollapour M, Fong D, Balakrishnan R, Harris N, Thompson S, Schuller C, Kchler K, Piper W (2004) Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Yeast 21:927–946CrossRefPubMedGoogle Scholar
  26. 26.
    Novick P, Botstein D (1985) Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40:405–416CrossRefPubMedGoogle Scholar
  27. 27.
    Pan X, Reissman S, Douglas NR, Huang Z, Yuan DS, Wang X, McCaffery JM, Frydman J, Boeke JD (2010) Trivalent arsenic inhibits the functions of chaperonin complex. Genetics 186:725–734CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127CrossRefPubMedGoogle Scholar
  29. 29.
    Raclavsky V, Novotny R, Smigova J, Vojkůvka Z (1999) Nikkomycin Z counteracts rylux BSU and congo red inhibition of Saccharomyces cerevisiae growth but does not prevent formation of aberrant cell walls. Folia Microbiol (Praha) 44:663–668CrossRefGoogle Scholar
  30. 30.
    Rand JD, Grant CM (2006) The thioredoxin system protects ribosomes against stress-induced aggregation. Mol Biol Cell 17:387–401CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sherman F (2002) Getting started with the yeast. In: Guthrie C, Fink GR (eds) Guide to yeast genetics and molecular biology. Methods in enzymology, vol 350. Academic Press, New York, pp 3–41CrossRefGoogle Scholar
  32. 32.
    Suzuki T, Sugiyama M, Wakazono K, Kaneko Y, Harashima S (2012) Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J Biosci Bioeng 113:421–430CrossRefPubMedGoogle Scholar
  33. 33.
    Takahashi T, Shimoi H, Ito K (2001) Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Mol Genet Genomics 265:1112–1119CrossRefPubMedGoogle Scholar
  34. 34.
    Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sá-Correia I (2009) Genome-wide identification of genes required for maximal tolerance to ethanol in yeast: important role of FPS1. Appl Environ Microbiol 75:5761–5772CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ursic D, Culbertson MR (1991) The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes. Mol Cell Biol 11:2629–2640CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ursic D, Sedbrook JC, Himmel KL, Culbertson MR (1994) The essential yeast Tcp1 protein affects actin and microtubules. Mol Biol Cell 5:1065–1080CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC, Brandt A (2006) Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23:351–359CrossRefPubMedGoogle Scholar
  38. 38.
    Vinh DB, Drubin DG (1994) A yeast TCP-1-like protein is required for actin function in vivo. Proc Natl Acad Sci USA 91:9116–9120CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Aswathy Narayanan
    • 1
  • Dileep Pullepu
    • 1
  • Praveen Kumar Reddy
    • 1
  • Wasim Uddin
    • 1
  • M. Anaul Kabir
    • 1
    Email author
  1. 1.Molecular Genetics Laboratory, School of BiotechnologyNational Institute of Technology CalicutCalicutIndia

Personalised recommendations