Wenyingzhuangia aestuarii sp. nov., A Marine Bacterium of the Family Flavobacteriaceae Isolated from an Estuary

Abstract

A Gram-negative, strictly aerobic, chemoheterotrophic, pale-yellow pigmented, non-motile, rod-shaped bacterial strain, designated MN1-138T, was isolated from water in the tidal zone at the estuary of Heita river, Iwate, Japan, using an in situ cultivation technique. Preliminary analysis based on the 16S rRNA gene sequence revealed that the novel isolate is affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes, and the highest sequence similarities were found with the species Wenyingzhuangia heitensis H-MN17T (97.3 %). The DNA–DNA relatedness between values between strains MN1-138T and W. heitensis H-MN17T was 34 %. The DNA G+C content of strain MN1-138T was determined to be 33.1 mol%; MK-6 was identified as the major menaquinone; and the presence of iso-C15:0, iso-C15:0 3-OH, and iso-C17:0 3-OH as the major (>10 %) cellular fatty acids. A polar lipid profile was present consisting of phosphatidylethanolamine, two unidentified glycolipids, and two unidentified lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel species of the genus Wenyingzhuangia for which the name Wenyingzhuangia aestuarii sp. nov. is proposed. The type strain of W. aestuarii sp. nov. is MN1-138T (=KCTC 42780T = NBRC 111505T).

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Bernardet JF (2011) Family I. Flavobacteriaceae Reichenbach 1992. In: Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ, Staley JT, Ward N, Brown D, Parte A (eds) Bergey’s manual of systematic bacteriology, vol 4, 2nd edn. Springer, New York, pp 106–111

    Google Scholar 

  2. 2.

    Bernardet JF, Nakagawa Y (2006) An introduction to the family Flavobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, an evolving electronic resource for the microbiological community, release 3.15. Springer, New York

    Google Scholar 

  3. 3.

    Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    CAS  PubMed  Google Scholar 

  4. 4.

    Collins CH, Lyne PM (1984) Microbiological methods, 5th edn. Butterworth, London

    Google Scholar 

  5. 5.

    Collins MD, Jones D (1981) A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51:129–134

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Dittmer JC, Lester RL (1964) A simple, specific spray for the detection of phospholipids on thin-layer chromoatograms. J Lipid Res 15:126–127

    Google Scholar 

  7. 7.

    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  8. 8.

    Garrity GM, Holt JG (2001) The road map to the manual. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 119–166

    Google Scholar 

  9. 9.

    Hansen GH, Sørheim R (1991) Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241

    Article  Google Scholar 

  10. 10.

    Hayakawa M, Otoguro M, Takeuchi T, Yamazaki T, Iimura Y (2000) Application of a method incorporating differential centrifugation for selective isolation of motile actinomycetes in soil and plant litter. Antonie Van Leeuwenhoek 78:171–185

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Jooste PJ (1985) The taxonomy and significance of FlavobacteriumCytophaga strains from dairy sources. PhD thesis, University of the Orange Free State, South Africa

  12. 12.

    Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  13. 13.

    Kirchman DL (2002) The ecology of CytophagaFlavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    CAS  PubMed  Google Scholar 

  14. 14.

    Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  15. 15.

    Liu Y, Liu LZ, Liu HC, Zhou YG, Qi FJ, Liu ZP (2014) Wenyingzhuangia marina gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a recirculating mariculture system. Int J Syst Evol Microbiol 64:469–474

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Ludwig W, Klenk HP (2001) Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 49–66

    Google Scholar 

  17. 17.

    Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  18. 18.

    McCammon SA, Innes BH, Bowman JP, Franzmann PD, Dobson SJ, Holloway PE, Skerratt JH, Nichols PD, Rankin LM (1998) Flavobacterium hibernum sp. nov., a lactose utilizing bacterium from a freshwater Antarctic lake. Int J Syst Bacteriol 48:1405–1412

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  20. 20.

    Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  21. 21.

    O’Sullivan LA, Rinna J, Humphreys G, Weightman AJ, Fry JC (2006) Culturable phylogenetic diversity of the phylum ‘Bacteroidetes’ from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae: Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov. Int J Syst Evol Microbiol 56:169–180

    Article  PubMed  Google Scholar 

  22. 22.

    Perry LB (1973) Gliding motility in some non-spreading flexibacteria. J Appl Microbiol 36:227–232

    CAS  Google Scholar 

  23. 23.

    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  24. 24.

    Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, Newark

  25. 25.

    Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  26. 26.

    Suzuki K, Kaneko T, Komagata K (1981) Deoxyribonucleic acid homologies among coryneform bacteria. Int J Syst Bacteriol 31:131–138

    Article  Google Scholar 

  27. 27.

    Tamura K, Peterson D, Petersen N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using Maximum Likelihood, evolutionary distance, and Maximum Parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  28. 28.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  29. 29.

    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  CAS  PubMed  Google Scholar 

  30. 30.

    Worliczek HL, Kämpfer P, Rosengarten R, Tindall RBJ, Busse HJ (2007) Polar lipid and fatty acid profiles-re-vitalizing old approaches as a modern tool for the classification of mycoplasmas? Syst Appl Microbiol 30:355–370

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109

    PubMed Central  CAS  PubMed  Google Scholar 

  32. 32.

    Yasumoto-Hirose M, Nishijima M, Ngirchechol MK, Kanoh K, Shizuri Y, Miki W (2006) Isolation of marine bacteria by in situ culture on media-supplemented polyurethane foam. Mar Biotechnol (NY) 8:227–237

    Article  CAS  Google Scholar 

  33. 33.

    Yoon J, Kasai H (2015) Wenyingzhuangia heitensis sp. nov., a new species of the family Flavobacteriaceae within the phylum Bacteroidetes isolated from seawater. Antonie Van Leeuwenhoek 107:655–661

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Yoon J, Oku N, Kasai H (2015) Wenyingzhuangia gracilariae sp. nov., a novel marine bacterium of the phylum Bacteroidetes isolated from the red alga Gracilaria vermiculophylla. Antonie Van Leeuwenhoek 107:1607–1613

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Yoon J, Yasumoto-Hirose M, Matsuo Y, Nozawa M, Matsuda S, Kasai H, Yokota A (2007) Pelagicoccus mobilis gen. nov., sp. nov., Pelagicoccus albus sp. nov. and Pelagicoccus litoralis sp. nov., three novel members of subdivision 4 within the phylum ‘Verrucomicrobia’, isolated from seawater by in situ cultivation. Int J Syst Evol Microbiol 57:1377–1385

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Midori Nozawa for her technical assistance. This work was supported by the New Energy and Industrial Technology Development Organization (NEDO), and in part by a research grant (2009–2011) of the Institute for Fermentation, Osaka, Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaewoo Yoon.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Transmission electron micrograph of a negatively stained cell of strain MN1-138T. Bar, 500 nm. Supplementary material 1 (PPTX 582 kb)

Supplementary Fig. 2

Thin-layer chromatograms showing the total polar lipid compositions of MN1-138T. Total polar lipids were detected by spraying the plate with molybdophosphoric acid, molybdenum blue, α-naphthol, and ninhydrin. PE: phosphatidylenthanolamine, UL: unidentified lipid, UGL: unidentified glycolipid. Supplementary material 2 (PPTX 930 kb)

Supplementary Fig. 3

Negative results from the API 20E, API 50CH, and API ZYM strips. Supplementary material 3 (PPTX 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoon, J., Kasai, H. Wenyingzhuangia aestuarii sp. nov., A Marine Bacterium of the Family Flavobacteriaceae Isolated from an Estuary. Curr Microbiol 72, 397–403 (2016). https://doi.org/10.1007/s00284-015-0965-9

Download citation

Keywords

  • Bacteroidetes
  • Marine Agar
  • gyrB Gene
  • Unidentified Lipid
  • Unidentified Glycolipid