Aneurinibacillus humi sp. nov., Isolated from Soil Collected in Ukraine

Abstract

A novel bacterium, designated U33T, was isolated from a soil sample collected in Mykhailyky, Poltavs’ka oblast, Ukraine. The bacterium was aerobic, Gram-positive, spore-forming, and consists of motile rods. The taxonomic position of strain U33T was studied by a polyphasic approach, and the results clearly showed that the phenotypic and chemotaxonomic properties are consistent with those of the genus Aneurinibacillus. The phylogenic analysis with 16S rRNA gene sequence of strains U33T showed the highest sequence similarity to those of Aneurinibacillus aneuriniticus ATCC 12856T (96.7 %), Aneurinibacillus migulanus DSM 2895T (96.7 %), Aneurinibacillus danicus NCIMB 13288T (95.8 %), and lower sequence similarity with other members of the genus Aneurinibacillus. Growth was observed at 20–55 °C (optimum, 37 °C) at pH 5.0–9.0 (optimum, pH 7) and with 0–5 % (w/v) NaCl (optimum, 2 % NaCl). The predominant menaquinone was MK-7 and the cell wall peptidoglycan consist of meso-diaminopimelic acid. The major cellular fatty acids are iso-C15:0 (58.0 %) and anteiso-C15:0 (13.2 %). The DNA G+C content of the strain U33T was 45.8 %. The physiological and chemotaxonomic characteristics distinguish strain U33T from the validly published species of genus Aneurinibacillus, and therefore, we consider this strain to represent a novel species of the genus Aneurinibacillus. The name Aneurinibaciilus humi sp. nov. is proposed with strain U33T (= KEMC7305-119T = JCM19865T) as the type strain.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Allan RN, Lebbe L, Heyrman J, De Vos P, Buchanan CJ, Logan NA (2005) Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica. Int J Syst Evol Microbiol 55:1039–1050

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    JG Cappuccino, N Sherman (2010) Microbiology: a laboratory manual, 9th edn. Benjamin Cummings, San Francisco, pp 69–74, 161–164

  3. 3.

    Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GH (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 21–33

    Google Scholar 

  4. 4.

    Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  5. 5.

    Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  6. 6.

    Goto K, Fujita R, Kato Y, Asahara M, Yokota A (2004) Reclassification of Brevibacillus brevis strains NCIMB 13288 and DSM 6472 (=NRRL NRS-887) as Aneurinibacillus danicus sp. nov. and Brevibacillus limnophilus sp. nov. Int J Syst Evol Microbiol 54:419–427

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  8. 8.

    Heyndrickx M, Lebbe L, Vancanneyt M, Kersters K, De Vos P, Logan NA, Forsyth G, Nazli S, Ali N et al (1997) A polyphasic reassessment of the genus Aneurinibacillus, reclassification of Bacillus thermoaerophilus (Meier-Stauffer et al. 1996) as Aneurinibacillus thermoaerophilus comb, nov., and emended descriptions of A. aneurinilyticus corrig., A. migulanus, and A. thermoaerophilus. Int J Syst Bacteriol 47:808–817

    Article  Google Scholar 

  9. 9.

    Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    CAS  Article  Google Scholar 

  10. 10.

    Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    PubMed  CAS  Article  Google Scholar 

  11. 11.

    Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  12. 12.

    Lee KC, Kim KK, Eom MK, Kim J-S, Kim D-S, Ko S-H, Lee J-S (2014) Aneurinibacillus soli. sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 64:3792–3797

    PubMed  Article  Google Scholar 

  13. 13.

    Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro organisms. J Mol Biol 3:208–218

    CAS  Article  Google Scholar 

  14. 14.

    Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    CAS  Article  Google Scholar 

  15. 15.

    Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  16. 16.

    Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE

  17. 17.

    Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  CAS  PubMed Central  Google Scholar 

  18. 18.

    Shida O, Takagi H, Kadowaki K, Komagata K (1996) Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    CAS  Article  Google Scholar 

  20. 20.

    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  21. 21.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  22. 22.

    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NESR) (No. NRF-2013R1A2A2A04014978) and Korea national Environmental Microorganisms Bank (2010-0007473).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sang Seob Lee.

Additional information

The NCBI GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain U33T is KJ725179.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 138 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Lee, S.S. Aneurinibacillus humi sp. nov., Isolated from Soil Collected in Ukraine. Curr Microbiol 72, 139–144 (2016). https://doi.org/10.1007/s00284-015-0930-7

Download citation

Keywords

  • Aneurinibacillus
  • Taxonomy
  • Soil