Skip to main content
Log in

Sub-Inhibitory Concentration of Piperacillin–Tazobactam May be Related to Virulence Properties of Filamentous Escherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Sub-inhibitory concentrations of antibiotics are always generated as a consequence of antimicrobial therapy and the effects of such residual products in bacterial morphology are well documented, especially the filamentation generated by beta-lactams. The aim of this study was to investigate some morphological and pathological aspects (virulence factors) of Escherichia coli cultivated under half-minimum inhibitory concentration (1.0 µg/mL) of piperacillin–tazobactam (PTZ sub-MIC). PTZ sub-MIC promoted noticeable changes in the bacterial cells which reach the peak of morphological alterations (filamentation) and complexity at 16 h of antimicrobial exposure. Thereafter the filamentous cells and a control one, not treated with PTZ, were comparatively tested for growth curve; biochemical profile; oxidative stress tolerance; biofilm production and cell hydrophobicity; motility and pathogenicity in vivo. PTZ sub-MIC attenuated the E. coli growth rate, but without changes in carbohydrate fermentation or in traditional biochemical tests. Overall, the treatment of E. coli with sub-MIC of PTZ generated filamentous forms which were accompanied by the inhibition of virulence factors such as the oxidative stress response, biofilm formation, cell surface hydrophobicity, and motility. These results are consistent with the reduced pathogenicity observed for the filamentous E. coli in the murine model of intra-abdominal infection. In other words, the treatment of E. coli with sub-MIC of PTZ suggests a decrease in their virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iida K, Hirata S, Nakamuta S, Koike M (1978) Inhibition of cell division of Escherichia coli by a new synthetic penicillin, piperacillin. Antimicrob Agents Chemother 14:257–266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Lorian V, Waluschka A, Kim Y (1982) Abnormal morphology of bacteria in the sputa of patients treated with antibiotics. J Clin Microbiol 16:382–386

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Lorian VGC (1991) Effect of low antibiotic concentrations on bacteria effects on ultrastructure, virulence, and susceptibility to immune defenses. Antibiotics in Laboratory Medicine. Williams & Wilkins Co, Baltimore, pp 493–549

    Google Scholar 

  4. Braga PC, Sasso MD, Sala MT (2000) Sub-MIC concentrations of cefodizime interfere with various factors affecting bacterial virulence. J Antimicrob Chemother 45:15–25

    Article  PubMed  CAS  Google Scholar 

  5. Fonseca AP, Extremina C, Fonseca AF, Sousa JC (2004) Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J Med Microbiol 53:903–910

    Article  PubMed  CAS  Google Scholar 

  6. De Souza Filho JA, Diniz CG, Barbosa NB et al (2012) Morphological, biochemical, physiological and molecular aspects of the response of Fusobacterium nucleatum exposed to subinhibitory concentrations of antimicrobials. Anaerobe 18:566–575

    Article  PubMed  Google Scholar 

  7. Freitas MCR, Silva VL, Gameiro J et al (2015) Bacteroides fragilis response to subinhibitory concentrations of antimicrobials includes different morphological, physiological and virulence patterns after in vitro selection. Microb Pathog 78:103–113

    Article  PubMed  CAS  Google Scholar 

  8. Fonseca AP, Sousa JC (2007) Effect of antibiotic-induced morphological changes on surface properties, motility and adhesion of nosocomial Pseudomonas aeruginosa strains under different physiological states. J Appl Microbiol 103:1828–1837

    Article  PubMed  CAS  Google Scholar 

  9. Gorby GL, McGee ZA (1990) Antimicrobial interference with bacterial mechanisms of pathogenicity: effect of sub-MIC azithromycin on gonococcal piliation and attachment to human epithelial cells. Antimicrob Agents Chemother 34:2445–2448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Lebrun A, Caya M, Jacques M (1992) Effects of sub-MICs of antibiotics on cell surface characteristics and virulence of Pasteurella multocida. Antimicrob Agents Chemother 36:2093–2098

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Justice SS, Hunstad DA, Cegelski L, Hultgren SJ (2008) Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6:162–168

    Article  PubMed  CAS  Google Scholar 

  12. Mohsin M, Haque A, Ali A et al (2010) Effects of ampicillin, gentamicin, and cefotaxime on the release of Shiga toxins from Shiga toxin-producing Escherichia coli isolated during a diarrhea episode in Faisalabad, Pakistan. Foodborne Pathog Dis 7:85–90

    Article  PubMed  CAS  Google Scholar 

  13. Braga PC, Piatti G (1993) Favourable effects of sub-MIC rufloxacin concentrations in decreasing the pathogen-host cell adhesion. Pharmacol Res 28:11–19

    Article  PubMed  CAS  Google Scholar 

  14. Dal Sasso M, Culici M, Bovio C, Braga PC (2003) Gemifloxacin: effects of sub-inhibitory concentrations on various factors affecting bacterial virulence. Int J Antimicrob Agents 21:325–333

    Article  PubMed  CAS  Google Scholar 

  15. Tateda K, Ishii Y, Kimura S et al (2007) Suppression of Pseudomonas aeruginosa quorum-sensing systems by macrolides: a promising strategy or an oriental mystery? J Infect Chemother 13:357–367

    Article  PubMed  CAS  Google Scholar 

  16. Majtán J, Majtánová L, Xu M, Majtán V (2008) In vitro effect of subinhibitory concentrations of antibiotics on biofilm formation by clinical strains of Salmonella enterica serovar Typhimurium isolated in Slovakia. J Appl Microbiol 104:1294–1301

    Article  PubMed  Google Scholar 

  17. Sasahara T, Satoh Y, Sekiguchi T et al (2003) Pretreatment of Pseudomonas aeruginosa with a sub-MIC of imipenem enhances bactericidal activity of neutrophils. J Infect Chemother 9:297–303

    Article  PubMed  CAS  Google Scholar 

  18. Dos Santos KV, Nicoli JR, Martins WA et al (2007) Comparative activity of ertapenem and piperacillin tazobactam in a murine systemic infection model with Bacteroides fragilis and Escherichia coli. J Med Microbiol 56:1576–1579

    Article  PubMed  Google Scholar 

  19. Holt JG, Krieg NR, Sneath PHS, Staley JTWS (1994) Bergey´s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  20. Dos Santos SG, Diniz CG, da Silva VL et al (2007) The influence of molecular oxygen exposure on the biology of Prevotella intermedia, with emphasis on its antibiotic susceptibility. J Appl Microbiol 103:882–891

    Article  PubMed  Google Scholar 

  21. O’Toole GA, Pratt LA, Watnick PI et al (1999) Genetic approaches to study of biofilms. Methods Enzymol 310:91–109

    Article  PubMed  Google Scholar 

  22. Wolfe AJ, Berg HC (1989) Migration of bacteria in semisolid agar. Proc Natl Acad Sci USA 86:6973–6977

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Buijs J, Dofferhoff ASM, Mouton JW, van der Meer JWM (2006) Pathophysiology of in vitro induced filaments, spheroplasts and rod-shaped bacteria in neutropenic mice. Clin Microbiol Infect 12:1105–1111

    Article  PubMed  CAS  Google Scholar 

  24. Buijs J, Dofferhoff ASM, Mouton JW, van der Meer JWM (2007) Continuous administration of PBP-2- and PBP-3-specific beta-lactams causes higher cytokine responses in murine Pseudomonas aeruginosa and Escherichia coli sepsis. J Antimicrob Chemother 59:926–933

    Article  PubMed  CAS  Google Scholar 

  25. Kazmierczak A, Pechinot A, Siebor E et al (1989) Sulbactam: secondary mechanisms of action. Diagn Microbiol Infect Dis 12:139S–146S

    Article  PubMed  CAS  Google Scholar 

  26. Moosdeen F, Williams JD, Yamabe S (1988) Antibacterial characteristics of YTR 830, a sulfone β-lactamase inhibitor, compared with those of clavulanic acid and sulbactam. Antimicrob Agents Chemother 32:925–927

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Chen K, Sun GW, Chua KL, Gan Y-H (2005) Modified virulence of antibiotic-induced Burkholderia pseudomallei filaments. Antimicrob Agents Chemother 49:1002–1009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Justice SS, Hung C, Theriot JA et al (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 101:1333–1338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Gottfredsson M, Erlendsdóttir H, Sigfússon A, Gudmundsson S (1998) Characteristics and dynamics of bacterial populations during postantibiotic effect determined by flow cytometry. Antimicrob Agents Chemother 42:1005–1011

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Wickens HJ, Pinney RJ, Mason DJ, Gant VA (2000) Flow cytometric investigation of filamentation, membrane patency, and membrane potential in Escherichia coli following ciprofloxacin exposure. Antimicrob Agents Chemother 44:682–687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Rothfield L, Justice S, García-Lara J (1999) Bacterial cell division. Annu Rev Genet 33:423–448

    Article  PubMed  CAS  Google Scholar 

  32. Diarra MS, Malouin F, Jacques M (1999) Postantibiotic and physiological effects of tilmicosin, tylosin, and apramycin at subminimal and suprainhibitory concentrations on some swine and bovine respiratory tract pathogens. Int J Antimicrob Agents 12:229–237

    Article  PubMed  CAS  Google Scholar 

  33. Diarra MS, Petitclerc D, Lacasse P (2002) Effect of lactoferrin in combination with penicillin on the morphology and the physiology of Staphylococcus aureus isolated from bovine mastitis. J Dairy Sci 85:1141–1149

    Article  PubMed  CAS  Google Scholar 

  34. Fang H, Edlund C, Hultenby K, Hedberg M (2002) Effects of cefoxitin on the growth and morphology of Bacteroides thetaiotaomicron strains with different cefoxitin susceptibility. Anaerobe 8:55–61

    Article  CAS  Google Scholar 

  35. Silvestro EM, Nakano V, Arana-Chavez VE et al (2006) Effects of subinhibitory concentrations of clindamycin on the morphological, biochemical and genetic characteristics of Bacteroides fragilis. FEMS Microbiol Lett 257:189–194

    Article  PubMed  CAS  Google Scholar 

  36. Veloso Lde C, dos Santos KV, de Andrade HM et al (2013) Proteomic changes in Bacteroides fragilis exposed to subinhibitory concentration of piperacillin/tazobactam. Anaerobe 22:69–76

    Article  PubMed  Google Scholar 

  37. Valéria dos Santos K, Diniz CG, de Castro Veloso L et al (2010) Proteomic analysis of Escherichia coli with experimentally induced resistance to piperacillin/tazobactam. Res Microbiol 161:268–275

    Article  Google Scholar 

  38. Kai T, Tateda K, Kimura S et al (2009) A low concentration of azithromycin inhibits the mRNA expression of N-acyl homoserine lactone synthesis enzymes, upstream of lasI or rhlI, in Pseudomonas aeruginosa. Pulm Pharmacol Ther 22:483–486

    Article  PubMed  CAS  Google Scholar 

  39. Bagge N, Schuster M, Hentzer M et al (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Schifferli DM, Beachey EH (1988) Bacterial adhesion: modulation by antibiotics with primary targets other than protein synthesis. Antimicrob Agents Chemother 32:1609–1613

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Sérgio, Luiza, Vivian, MOA, Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Pró-Reitorias de Pesquisa e Pós-Graduação (PRPPG) da Universidade Federal de Minas Gerais (UFMG) e da Universidade Federal do Espírito Santo (UFES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kênia Valéria dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade, J.P.L., de Macêdo Farias, L., Ferreira, J.F.G. et al. Sub-Inhibitory Concentration of Piperacillin–Tazobactam May be Related to Virulence Properties of Filamentous Escherichia coli . Curr Microbiol 72, 19–28 (2016). https://doi.org/10.1007/s00284-015-0912-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0912-9

Keywords

Navigation