Skip to main content
Log in

The Accordant Trend of Both Parameters (rgs Expression and cAMP Content) Follows the Pattern of Development of Fruiting Body in Volvariella volvacea

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The formation of fruiting body in Volvariella volvacea is affected by endogenous genes and environmental factors. However, its regulation at a molecular level is still poorly understood. To study the genes involved in the formation of fruiting body, we cloned a new regulator of the G protein signaling (RGS) encoding gene (rgs) from V. volvacea. Phylogenetic analysis showed that RGS in V. volvacea and other basidiomycete RGS proteins from Schizophyllum commune and Coprinus cinereus belong to the same clade. In addition, we assayed intracellular cAMP content in the three developmental stages (mycelium, fruiting body primordia, and button). We also found that the expression of rgs was highly positively correlated to the content of intracellular cAMP during fruiting body formation. The conserved protein sequences and expression of rgs, together with high concent of cAMP at primordia tissue, suggested that rgs gene and cAMP may play a crucial role in fruiting body formation in V. volvacea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bao D, Gong M, Zheng H, Chen M, Zhang L, Wang H, Jiang J, Wu L, Zhu Y, Zhu G, Zhou Y, Li C, Wang S, Zhao Y, Zhao G, Tian Q (2013) Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea) genome. Plos one 8:e58294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bölker M (1998) Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet 25:143–156

    Article  Google Scholar 

  3. C’t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX, Boer JM, van Ommen GJ, den Dunnen JT (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 36:e141

    Article  Google Scholar 

  4. Chang ST, Buswell JA (1996) Mushroom nutriceuticals. World J Microbiol Biotechnol 12:473–476

    Article  PubMed  Google Scholar 

  5. Chang ST, Yau CK (1971) Volvariella volvacea and its Life History. Am J Bot 58(6):552–561

    Article  Google Scholar 

  6. Chen B, Gui F, Xie B, Deng Y, Sun X, Lin M, Tao Y, Li S (2013) Composition and expression of genes encoding carbohydrate-active enzymes in the straw-degrading mushroom Volvariella volvacea. Plos one 8:e58780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chen SC, Ge W, Buswell JA (2004) Molecular cloning of a new laccase from the edible straw mushroom Volvariella volvacea: possible involvement in fruit body development. FEMS Microbiol Lett 230:171–176

    Article  CAS  PubMed  Google Scholar 

  8. Cui Z, Meng X, Wang C (2006) Research on HPLC method for check in cAMP in winter-date. Food Res Dev 27:158–159 Published in Chinese

    Google Scholar 

  9. Fowler TJ, Mitton MF (2000) Scooter, a new active transposon in Schizophyllum commune, has disrupted two genes regulating signal transduction. Genetics 156:1585–1594

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Lalitha S (2000) Primer premier 5. Biotech Softw Internet Rep 1:270–272

    Article  Google Scholar 

  11. Lee BN, Adams TH (1994) Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol 14:323–334

    Article  CAS  PubMed  Google Scholar 

  12. Li H, Jiang H (2012) SPSS Data Analysis. Beijing, China. Published in Chinese

  13. Liebmann B, Gattung S, Jahn B, Brakhage AA (2003) cAMP signaling in Aspergillus fumigatusis involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Mol Gen Genomics 269:420–435

    Article  CAS  Google Scholar 

  14. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  15. Meng L, Yan J, Xie B, Li Y, Chen B, Liu S, Li D, Yang Z, Zeng X, Deng Y, Jiang Y (2013) Genes encoding FAD-binding proteins in Volvariella volvacea exhibit differential expression in homokaryons and heterokaryons. Microbiol Res 168:533–546

    Article  CAS  PubMed  Google Scholar 

  16. Mukherjee M, Kim JE, Park YS, Kolomiets MV, Shim WB (2011) Regulators of G-protein signalling in Fusarium verticillioides mediate differential host-pathogen responses on nonviable versus viable maize kernels. Mol Plant Pathol 12:479–491

    Article  CAS  PubMed  Google Scholar 

  17. Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  18. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:116–120

    Article  Google Scholar 

  19. Segers GC, Regier JC, Nuss DL (2004) Evidence for a role of the regulator of G-protein signaling protein CPRGS-1 in Gα subunit CPG-1-mediated regulation of fungal virulence, conidiation, and hydrophobin synthesis in the chestnut blight fungus Cryphonectria parasitica. Eukaryot Cell 3:1454–1463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Tao Y, Xie B, Yang Z, Chen Z, Chen B, Deng Y, Jiang Y, van Peer AF (2013) Identification and expression analysis of a new glycoside hydrolase family 55 exo-β-1, 3-glucanase-encoding gene in Volvariella volvacea suggests a role in fruiting body development. Gene 527:154–160

    Article  CAS  PubMed  Google Scholar 

  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  23. Uno I, Ishikawa T (1973) Metabolism of adenosine 3′, 5′-cyclic monophosphate and induction of fruiting bodies in Coprinus macrorhizus. Bacteriology 113:1249–1255

    CAS  Google Scholar 

  24. Uno I, Yamaguchi M, Ishikawa T (1974) The effect of light on fruiting body formation and adenosine 3′:5′-Cyclic monophosphate metabolis in Coprinus macrorhizus. Proc Nat Acad Sci 71:479–483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wang Y, Geng Z, Jiang D, Long F, Zhao Y, Su H, Zhang K, Yang J (2013) Characterizations and functions of regulator of G protein signaling (RGS) in fungi. Appl Microbiol Biotechnol 97:7977–7987

    Article  CAS  PubMed  Google Scholar 

  26. Xue C, Hsueh YP, Chen L, Heitman J (2008) The RGS protein Crg2 regulates both pheromone and cAMP signalling in Cryptococcus neoformans. Mol Microbiol 70:379–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yamagishi K, Kimur T, Suzuki M, Shinmoto H (2002) Suppression of fruit-body formation by constitutively active G-protein a-subunits ScGP-A and ScGP-C in the homobasidiomycete Schizophyllum commune. Microbiology 148:2797–2809

    Article  CAS  PubMed  Google Scholar 

  28. Zhang H, Tang W, Liu K, Huang Q, Zhang X, Yan X, Chen Y, Wang J, Qi Z, Wang Z, Zheng X, Wang P, Zhang Z (2011) Eight RGS and RGS-like proteins orchestrate growth, differentiation, and pathogenicity of Magnaporthe oryzae. PLoS Pathog 7:e1002450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Zhang J (2009) Industries science and development of edible fungi in China. Beijing. Published in Chinese

  30. Zhang Z, Lin H, Ma B (2010) ZOOM Lite: next-generation sequencing data mapping and visualization software. Nucleic Acids Res 38:743–748

    Article  Google Scholar 

  31. Zhong H, Neubig RR (2001) Regulator of G protein signaling proteins: novel multifunctional drug targets. J Pharmacol Exp Ther 297:837–845

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Key Basic Research Program of China (2014CB138302), and the China Agriculture Research System (CARS24). The authors thank the Fujian Edible Fungi Engineering Technology Research Center and the National Fungi Breeding Center (Fujian Branch) for providing the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baogui Xie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Supplementary material 2 (TIFF 3544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Lian, L., Guo, L. et al. The Accordant Trend of Both Parameters (rgs Expression and cAMP Content) Follows the Pattern of Development of Fruiting Body in Volvariella volvacea . Curr Microbiol 71, 579–584 (2015). https://doi.org/10.1007/s00284-015-0885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0885-8

Keywords

Navigation