Skip to main content
Log in

Sequence Analysis of lip R: A Good Method for Molecular Epidemiology of Clinical Isolates of Mycobacterium tuberculosis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Advances in DNA sequencing have greatly enhanced the molecular epidemiology studies. In order to assess evolutionary and phylogenetic relation of Mycobacterium tuberculosis isolates several gene targets were evaluated. In this study, appropriate fragments of 5 highly variable genes (rpsL, mprA, lipR, katG, and fgd1 genes) were sequenced. The sequence data were analyzed with neighbor-joining method using mega and Geneious software. The phylogenetic trees analyzes revealed that the discriminatory power of lipR is much stronger than that observed in the other genes. lipR could distinguish between more clinical isolates. Therefore, lipR is a promising target for sequence analyzes of M. tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Achtman M (2008) Evolution, population structure, and phylogeography of geneti-cally monomorphic bacterial pathogens. Annu Rev Microbiol 62(53):e70

    Google Scholar 

  2. Achtman M, Morelli G, Zhu P, Wirth T, Diehl I et al (2004) Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci USA 101:17837–17842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cui Y, Li Y, Gorge O, Platonov ME, Yan Y et al (2008) Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS One 3:e2652

    Article  PubMed Central  PubMed  Google Scholar 

  4. Devulder G, Pérouse de Montclos M, Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. IJSEM 55(1):293–302

    CAS  PubMed  Google Scholar 

  5. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates Inc, Sunderland

    Google Scholar 

  6. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpsons index of diversity. J Clin Microbiol 26(11):2465–2466

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Johansson A, Farlow J, Larsson P, Dukerich M, Chambers E et al (2004) Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. J Bacteriol 186:5808–5818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Keim P, Price LB, Klevytska AM, Smith KL, Schupp JM et al (2000) Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol 182:2928–2936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kirschner P, Bottger EC (1998) Species identification of mycobacteria using rDNA sequencing. Methods Mol Biol 101:349–361

    CAS  PubMed  Google Scholar 

  10. Klevytska AM, Price LB, Schupp JM, Worsham PL, Wong J et al (2001) Identification and characterization of variable-number tandem repeats in the Yersinia pestis genome. J Clin Microbiol 39:3179–3185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kolbert CP, Persing DH (1999) Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol 2:299–305

    Article  CAS  PubMed  Google Scholar 

  12. Lawn SD, Zumla AI (2011) Tuberculosis. Lancet 378(9785):57–72. doi:10.1016/S0140-6736(10)62173-3

    Article  PubMed  Google Scholar 

  13. Lindstedt BA, Vardund T, Kapperud G (2004) Multiple-locus variable-number tandem-repeats analysis of Escherichia coli O157 using PCR multiplexing and multi-colored capillary electrophoresis. J Microbiol Methods 58:213–222

    Article  CAS  PubMed  Google Scholar 

  14. Lu B, Dong HY, Zhao XQ, Liu ZG, Liu HC, Zhang YY, Jiang Y, Wan KL (2012) A new multilocus sequence analysis scheme for Mycobacterium tuberculosis. Biomed Environ Sci 25(6):620–629. doi:10.3967/0895-3988.2012.06.003

    CAS  PubMed  Google Scholar 

  15. Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN (2006) Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev 19(4):658–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Petroff SA (1915) A new and rapid method for the isolation and cultivation of tubercle bacilli directly from the sputum and feces. J Exp Med 21(1):38–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ramisse V, Houssu P, Hernandez E, Denoeud F, Hilaire V et al (2004) Variable number of tandem repeats in Salmonella enterica subsp. enterica for typing purposes. J Clin Microbiol 42:5722–5730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sheline KD, France AM, Talarico S, Foxman B, Zhang L, Marrs CF et al (2009) Does the lipR gene of tubercle bacilli have a role in tuberculosis transmission and pathogenesis? Tuberculosis. 89(2):114–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Soleimanpour S, Hamedi Asl D, Tadayon K, Farazi AA, Keshavarz R, Soleymani K, Seddighinia FS, Mosavari N (2014) Extensive genetic diversity among clinical isolates of Mycobacterium tuberculosisin central province of Iran. Tuberc Res Treat. doi:10.1155/2014/195287

    PubMed Central  PubMed  Google Scholar 

  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Truman R, Fontes AB, De Miranda AB, Suffys P, Gillis T (2004) Genotypic variation and stability of four variable-number tandem repeats and their suitability for discriminating strains of Mycobacterium leprae. J Clin Microbiol 42:2558–2565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Van Soolingen D, Hermans PW, de Haas PE, Soll DR, Van Embden JD (1991) Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol 29:2578–2586

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Deputy of Research Affairs of Mashhad University of Medical Sciences for providing financial support for this research and also Ethics Committee of Mashhad University of Medical Sciences for review and approval (Grant No. 87909).

Conflict of interest

Authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiarash Ghazvini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saedi, S., Youssefi, M., Safdari, H. et al. Sequence Analysis of lip R: A Good Method for Molecular Epidemiology of Clinical Isolates of Mycobacterium tuberculosis . Curr Microbiol 71, 443–448 (2015). https://doi.org/10.1007/s00284-015-0856-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0856-0

Keywords

Navigation