Skip to main content
Log in

Gramella lutea sp. nov., a Novel Species of the Family Flavobacteriaceae Isolated from Marine Sediment

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A strictly aerobic, Gram stain-negative, yellowish-orange-pigmented, non-motile, rod-shaped strain designated YJ019T was isolated from marine sediment collected at Hwangwooji, a natural pond in Jeju island, Republic of Korea. Preliminary analysis based on the 16S rRNA gene sequence revealed that the novel isolate was affiliated with the family Flavobacteriaceae within the phylum Bacteroidetes and that it showed the highest sequence similarity (97.7 %) to Gramella gaetbulicola RA5-111T. The hybridization values for DNA–DNA relatedness between strain YJ019T and the type strains of the five validly described Gramella species were lower than 70 %, which is accepted as the phylogenetic definition of a novel species. The DNA G+C content of strain YJ019T was 38.4 mol%. The major menaquinone was MK-6, and iso-C15:0, iso-C17:0 3-OH and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) were the major (>10 %) cellular fatty acids. A complex polar lipid profile was present consisting of phosphatidylethanolamine, an unidentified aminophospholipid, two unidentified aminolipids and two unidentified lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel species for which the name Gramella lutea sp. nov. is proposed. The type strain of Gramella lutea sp. nov. is YJ019T (=KCTC 42382T = NBRC 110751T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akagawa-Matsushita M, Matsuo M, Koga Y, Yamasato K (1992) Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov., bacteria that decompose algal polysaccharides. Int J Syst Bacteriol 42:621–627

    Article  CAS  Google Scholar 

  2. Atlas RM, Parks LC (eds) (1993) Handbook of microbiological media. CRC Press, Boca Raton

    Google Scholar 

  3. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    Article  CAS  PubMed  Google Scholar 

  4. Bianchi A, Bianchi M (1995) Bacterial diversity and ecosystem maintenance: an overview. In: Hawksworth DL, Colwell RR (eds) Microbial diversity and ecosystem maintenance. CAB International (UNEP), Wallingford, pp 185–198

    Google Scholar 

  5. Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Brettar I, Christen R, Höfle MG (2004) Aquiflexum balticum gen. nov., sp. nov., a novel marine bacterium of the Cytophaga-Flavobacterium-Bacteroides group isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 54:2335–2341

    Article  CAS  PubMed  Google Scholar 

  7. Cho S, Chae S, Cho M, Kim T, Choi S, Han J, Kim Y, Joung Y, Joh K, Nedashkovskaya OI, Kim SB (2011) Gramella gaetbulicola sp. nov., a member of the family Flavobacteriaceae isolated from foreshore soil. Int J Syst Evol Microbiol 61:2654–2658

    Article  CAS  PubMed  Google Scholar 

  8. Collins CH, Lyne PM (1984) Microbiological methods, 5th edn. Butterworth, London

    Google Scholar 

  9. Collins MD, Jones D (1981) A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51:129–134

    Article  CAS  PubMed  Google Scholar 

  10. Cottrell MT, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  12. Dittmer JC, Lester RL (1964) A simple, specific spray for the detection of phospholipids on thin-layer chromoatograms. J Lipid Res 15:126–127

    Google Scholar 

  13. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  14. Fitch WM (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  15. Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    PubMed Central  PubMed  Google Scholar 

  16. Hameed A, Shahina M, Lin SY, Liu YC, Lai WA, Young CC (2014) Gramella oceani sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 64:2675–2681

    Article  CAS  PubMed  Google Scholar 

  17. Hansen GH, Sørheim R (1991) Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241

    Article  Google Scholar 

  18. Jeong SH, Jin HM, Jeon CO (2013) Gramella aestuarii sp. nov., isolated from a tidal flat, and emended description of Gramella echinicola. Int J Syst Evol Microbiol 63:2872–2878

    Article  CAS  PubMed  Google Scholar 

  19. Joung Y, Kim H, Jang T, Ahn TS, Joh K (2011) Gramella jeungdoensis sp. nov., isolated from a solar saltern in Korea. J Microbiol 49(6):1022–1026

    Article  PubMed  Google Scholar 

  20. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  22. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  23. Lau SC, Tsoi MM, Li X, Plakhotnikova I, Dobretsov S, Wong PK, Qian PY (2005) Gramella portivictoriae sp. nov., a novel member of the family Flavobacteriaceae isolated from marine sediment. Int J Syst Evol Microbiol 55:2497–2500

    Article  CAS  PubMed  Google Scholar 

  24. Liu K, Li S, Jiao N, Tang K (2013) Gramella flava sp. nov., a novel member of the family Flavobacteriaceae isolated from the Southeastern Pacific. Int J Syst Evol Microbiol 64:165–168

    Article  PubMed  Google Scholar 

  25. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  26. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  27. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  28. Nedashkovskaya OI, Kim SB, Bae KS (2010) Gramella marina sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 60:2799–2802

    Article  CAS  PubMed  Google Scholar 

  29. Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV, Bae KS, Lee DH, Kim IS (2005) Gramella echinicola gen. nov., sp. nov., a novel halophilic bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 55:391–394

    Article  CAS  PubMed  Google Scholar 

  30. O’Sullivan LA, Weightman AJ, Fry JC (2002) New degenerate Cytophaga-Flexibacter-Bacteroides-specific 16S ribosomal DNA-targeted oligonucleotide probes reveal high bacterial diversity in River Taff epilithon. Appl Environ Microbiol 68:201–210

    Article  PubMed Central  PubMed  Google Scholar 

  31. Perry LB (1973) Gliding motility in some non-spreading flexibacteria. J Appl Microbiol 36:227–232

    CAS  Google Scholar 

  32. Pinhassi J, Berman T (2003) Differential growth response of colony-forming alpha- and gamma-proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat. Appl Environ Microbiol 69:199–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Reichenbach H (1989) Genus I. Cytophaga Winogradsky 1929, 577, AL emend. In: Staley JT, Bryant MP, Pfennig N, Holt JC (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 2015–2050

    Google Scholar 

  34. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  35. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  36. Shahina M, Hameed A, Lin SY, Lee RJ, Lee MR, Young CC (2014) Gramella planctonica sp. nov., a zeaxanthin-producing bacterium isolated from surface seawater, and emended descriptions of Gramella aestuarii and Gramella echinicola. Antonie Van Leeuwenhoek 105(4):771–779

    Article  CAS  PubMed  Google Scholar 

  37. Tamura K, Peterson D, Petersen N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  40. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Worliczek HL, Kämpfer P, Rosengarten R, Tindall BJ, Busse HJ (2007) Polar lipid and fatty acid profiles-re-vitalizing old approaches as a modern tool for the classification of mycoplasmas? Syst Appl Microbiol 30:355–370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea Grants (NRF-2014R1A1A2057302), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyukjae Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Thin-layer chromatograms showing the total polar lipid compositions of YJ019T. Total polar lipids were detected by spraying the plate with molybdophosphoric acid, molybdenun blue, α-naphthol and ninhydrin. PE: Phosphatidylethanolamine, UAPL: Unidentified aminophospholipid, UAL: Unidentified aminolipid, UL: Unidentified lipid. Supplementary material 1 (PPT 1551 kb)

Supplementary Fig. 2

All negative results from the API 20E, API 50CH and API ZYM strips. Supplementary material 2 (PPTX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, J., Jo, Y., Kim, G.J. et al. Gramella lutea sp. nov., a Novel Species of the Family Flavobacteriaceae Isolated from Marine Sediment. Curr Microbiol 71, 252–258 (2015). https://doi.org/10.1007/s00284-015-0849-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0849-z

Keywords

Navigation