Skip to main content
Log in

Analysis of yeh Fimbrial Gene Cluster in Escherichia coli O157:H7 in Order to Find a Genetic Marker for this Serotype

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

yeh fimbrial gene cluster encodes a type of putative fimbrial complex belonging to chaperone–usher assembly pathway. Recent studies have shown that yeh fimbrial gene cluster is present in 94 % of Escherichia coli isolates and responsible for adhesion to some abiotic surfaces. Our preliminary comparative genomic analysis of 96 complete genomes of different E. coli strains revealed that the major region of this gene cluster is unique to E. coli O157:H7 strains. To investigate the detail of the analysis, we BLAST the sequence of this gene cluster against the existing complete and draft genome sequences of different E. coli strains and other genera belonging to Enterobacteriaceae family in NCBI database. The results showed that this gene cluster is properly unique to E. coli O157:H7 strains and could be used as a stable and specific genetic signature for the identification of this serotype. In this respect, we also experimentally validated the specificity of this gene cluster for the identification of E. coli O157:H7 strains by loop-mediated isothermal amplification method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Besser M, Richard E, Griffin M, Patricia M, Slutsker M, Laurence MPH (1999) Escherichia coli O157: H7 gastroenteritis and the hemolytic uremic syndrome: an emerging infectious disease 1. Annu Rev Med 50(1):355–367

    Article  CAS  PubMed  Google Scholar 

  2. Croxen MA, Finlay BB (2009) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8(1):26–38

    Google Scholar 

  3. Wurpel DJ, Beatson SA, Totsika M, Petty NK, Schembri MA (2013) Chaperone–usher fimbriae of Escherichia coli. PLoS One 8(1):e52835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Low AS, Holden N, Rosser T, Roe AJ, Constantinidou C, Hobman JL, Smith DG, Low JC, Gally DL (2006) Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157: H7. Environ Microbiol 8(6):1033–1047

    Article  CAS  PubMed  Google Scholar 

  5. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han C-G, Ohtsubo E, Nakayama K, Murata T (2001) Complete genome sequence of enterohemorrhagic Eschelichia coli O157: H7 and genomic comparison with a laboratory strain K-12. DNA Res 8(1):11–22

    Article  CAS  PubMed  Google Scholar 

  6. Waksman G, Hultgren SJ (2009) Structural biology of the chaperone–usher pathway of pilus biogenesis. Nat Rev Microbiol 7(11):765–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wu X-R, Sun T-T, Medina JJ (1996) In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc Natl Acad Sci 93(18):9630–9635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Snyder JA, Haugen BJ, Lockatell CV, Maroncle N, Hagan EC, Johnson DE, Welch RA, Mobley HL (2005) Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun 73(11):7588–7596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Welinder-Olsson C, Kaijser B (2005) Enterohemorrhagic Escherichia coli (EHEC). Scand J Infect Dis 37(6–7):405–416

    Article  CAS  PubMed  Google Scholar 

  10. MaA R, Saldaña Z, Erdem AL, Monteiro-Neto V, Vázquez A, Kaper JB, Puente JL, Girón JA (2007) Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci 104(25):10637–10642

    Article  Google Scholar 

  11. Badouraly R, Prevost MC, Ghigo JM, Beloin C (2010) Escherichia coli K-12 possesses multiple cryptic but functional chaperone–usher fimbriae with distinct surface specificities. Environ Microbiol 12(7):1957–1977

    Article  PubMed  Google Scholar 

  12. Spurbeck RR, Stapleton AE, Johnson JR, Walk ST, Hooton TM, Mobley HL (2011) Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of ygi and yad fimbriae. Infect Immun 79(12):4753–4763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ghigo JM, Beloin C (2011) The sweet connection: solving the riddle of multiple sugar-binding fimbrial adhesins in Escherichia coli. Bioessays 33(4):300–311

    Article  PubMed  Google Scholar 

  14. Darling AE, Mau B, Perna NT (2010) ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5(6):e11147

    Article  PubMed Central  PubMed  Google Scholar 

  15. Altschul S (2011) The statistics of sequence similarity scores. http://www.ncbi.nlm.nih.gov/blast/tutorial/

  16. Breen J, Wicker T, Kong X, Zhang J, Ma W, Paux E, Feuillet C, Appels R, Bellgard M (2010) A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block. BMC Plant Biol 10(1):98

    Article  PubMed Central  PubMed  Google Scholar 

  17. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL (2004) The Pfam protein families database. Nucleic Acids Res 32(suppl 1):D138–D141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33(suppl 1):D192–D196

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  PubMed  Google Scholar 

  20. Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14(4):378–379

    Article  CAS  PubMed  Google Scholar 

  21. Zdobnov EM, Apweiler R (2001) InterProScan: an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17(9):847–848

    Article  CAS  PubMed  Google Scholar 

  22. Luk JM, Kongmuang U, Tsang R, Lindberg AA (1997) An enzyme-linked immunosorbent assay to detect PCR products of the rfbS gene from serogroup D salmonellae: a rapid screening prototype. J Clin Microbiol 35(3):714–718

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Mori Y, Nagamine K, Tomita N, Notomi T (2001) Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem Biophys Res Commun 289(1):150–154

    Article  CAS  PubMed  Google Scholar 

  24. Deisingh A, Thompson M (2004) Strategies for the detection of Escherichia coli O157: H7 in foods. J Appl Microbiol 96(3):419–429

    Article  CAS  PubMed  Google Scholar 

  25. Meng J, Doyle MP, Zhao T, Zhao S (1994) Detection and control of Escherichia coli O157: H7 in foods. Trends Food Sci Tech 5(6):179–185

    Article  CAS  Google Scholar 

  26. Feng P (1993) Identification of Escherichia coli serotype O157: H7 by DNA probe specific for an allele of uidA gene. Mol Cell Probe 7(2):151–154

    Article  Google Scholar 

  27. Cebula TA, Payne WL, Feng P (1995) Simultaneous identification of strains of Escherichia coli serotype O157: H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. J Clin Microbiol 33(1):248–250

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Desmarchelier PM, Bilge SS, Fegan N, Mills L, Vary JC, Tarr PI (1998) A PCR specific for Escherichia coli O157 based on the rfb locus encoding O157 lipopolysaccharide. J Clin Microbiol 36(6):1801–1804

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Fields PI, Blom K, Hughes HJ, Helsel LO, Feng P, Swaminathan B (1997) Molecular characterization of the gene encoding H antigen in Escherichia coli and development of a PCR-restriction fragment length polymorphism test for identification of E. coli O157: H7 and O157: NM. J Clin Microbiol 35(5):1066–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Oberst R, Hays M, Bohra L, Phebus R, Yamashiro C, Paszko-Kolva C, Flood S, Sargeant J, Gillespie J (1998) PCR-based DNA amplification and presumptive detection of Escherichia coli O157: H7 with an internal fluorogenic probe and the 5′ nuclease (TaqMan) assay. Appl Environ Microbiol 64(9):3389–3396

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Li B, Koch WH, Cebula TA (1997) Detection and characterization of the fimA gene of Escherichia coli O157: H7. Mol Cell Probe 11(6):397–406

    Article  CAS  Google Scholar 

  32. DebRoy C, Roberts E, Valadez AM, Dudley EG, Cutter CN (2011) Detection of Shiga toxin–producing Escherichia coli O26, O45, O103, O111, O113, O121, O145, and O157 serogroups by multiplex polymerase chain reaction of the wzx gene of the O-antigen gene cluster. Foodborne Pathog Dis 8(5):651–652

    Article  CAS  PubMed  Google Scholar 

  33. Feng P, Dey M, Abe A, Takeda T (2001) Isogenic strain of Escherichia coli O157: H7 that has lost both shiga toxin 1 and 2 genes. Clin Diagn Lab Immunol 8(4):711–717

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Karch H, Meyer T, Rüssmann H, Heesemann J (1992) Frequent loss of Shiga-like toxin genes in clinical isolates of Escherichia coli upon subcultivation. Infect Immun 60(8):3464–3467

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11(1):142–201

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Roe AJ, Currie C, Smith DG, Gally DL (2001) Analysis of type 1 fimbriae expression in verotoxigenic Escherichia coli: a comparison between serotypes O157 and O26. Microbiology 147(1):145–152

    CAS  PubMed  Google Scholar 

  37. Busch A, Waksman G (2012) Chaperone–usher pathways: diversity and pilus assembly mechanism. Philos Trans R Soc B 367(1592):1112–1122

    Article  CAS  Google Scholar 

  38. Nuccio S-P, Bäumler AJ (2007) Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 71(4):551–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Donnenberg M (2013) Escherichia coli: pathotypes and principles of pathogenesis. Academic Press, New York

    Google Scholar 

  40. Lindberg F, Lund B, Johansson L, Normark S (1987) Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus. Nature 328(6125):84–87

    Article  CAS  PubMed  Google Scholar 

  41. Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ, Knight SD (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285(5430):1061–1066

    Article  CAS  PubMed  Google Scholar 

  42. Volkan E, Ford BA, Pinkner JS, Dodson KW, Henderson NS, Thanassi DG, Waksman G, Hultgren SJ (2012) Domain activities of PapC usher reveal the mechanism of action of an Escherichia coli molecular machine. Proc Natl Acad Sci 109(24):9563–9568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Li B, Chen J-Q (2012) Real-time PCR methodology for selective detection of viable Escherichia coli O157: H7 cells by targeting Z3276 as a genetic marker. Appl Environ Microbiol 78(15):5297–5304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Frankel G, Phillips AD, Rosenshine I, Dougan G, Kaper JB, Knutton S (1998) Enteropathogenic and enterohemorrhagic Escherichia coli: more subversive elements. Mol Microbiol 30(5):911–921

    Article  CAS  PubMed  Google Scholar 

  45. Remaut H, Tang C, Henderson NS, Pinkner JS, Wang T, Hultgren SJ, Thanassi DG, Waksman G, Li H (2008) Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 133(4):640–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Slonim LN, Pinkner JS, Brändén C, Hultgren SJ (1992) Interactive surface in the PapD chaperone cleft is conserved in pilus chaperone superfamily and essential in subunit recognition and assembly. The EMBO J 11(13):4747

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the joint financial support of this investigation by the Research Council of Shahid Bahonar University of Kerman (Kerman, Iran) and Iran National Science Foundation (INSF) (Grant No. 92007684).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Ravan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

284_2015_842_MOESM1_ESM.jpg

Supplementary S1: Alignment of nucleotide and deduced amino acid sequence of yehB gene in E. coli O157:H7 with other types of E. coli, Shigella and Salmonella genomes. Numbers and gray and black boxes on the top of reference nucleotide sequence (AE005174) show numbers of nucleotides. Highly conserved (100 %) nucleotides of yehB gene in E. coli O157:H7 genomes are indicated by black boxes on the top of reference nucleotide sequence. Nucleotides and amino acids which are the same as reference sequence are shown as dot. Variable nucleotides and amino acids are shown as a black letter. Filled black boxes below the reference amino acid sequence are conserved amino acids for E. coli O157:H7. Gray boxes include the best target regions of this gene for the identification of E. coli O157:H7 and the numbers show the position of these regions on the reference sequence. Supplementary material 1 (JPEG 3449 kb)

284_2015_842_MOESM2_ESM.jpg

Supplementary S2: Alignment of nucleotide sequence and deduced amino acid sequence of yehC gene in E. coli O157:H7 genomes whit other types of E. coli, Shigella and Salmonella genomes.. Numbers and gray and black boxes on the top of reference nucleotide sequence (AE005174) show numbers of nucleotides. Highly conserved (100 %) nucleotides of yehC gene in E. coli O157:H7 genomes are indicated by black boxes on the top of reference nucleotide sequence. Nucleotides and amino acids which are the same as reference sequence are shown as dot.Variable nucleotides and amino acids are shown as a black letter. Filled black boxes below the reference amino acid sequence are conserved amino acids for E. coli O157:H7. 322-bp specific region of this gene and its best target region for the identification of E. coli O157:H7 are indicated by black boxes and the numbers show the position of these regions on the reference sequence. Supplementary material 2 (JPEG 1588 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravan, H., Amandadi, M. Analysis of yeh Fimbrial Gene Cluster in Escherichia coli O157:H7 in Order to Find a Genetic Marker for this Serotype. Curr Microbiol 71, 274–282 (2015). https://doi.org/10.1007/s00284-015-0842-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0842-6

Keywords

Navigation