Antimicrobial Activity of Copper Alloys Against Invasive Multidrug-Resistant Nosocomial Pathogens

Abstract

The emergence and spread of antibiotic resistance demanded novel approaches for the prevention of nosocomial infections, and metallic copper surfaces have been suggested as an alternative for the control of multidrug-resistant (MDR) bacteria in surfaces in the hospital environment. This study aimed to evaluate the antimicrobial activity of copper material for invasive MDR nosocomial pathogens isolated over time, in comparison to stainless steel. Clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) (n:4), OXA-23 and OXA-58 positive, MDR Acinetobacter baumannii (n:6) and Pseudomonas aeruginosa (n:4) were evaluated. The antimicrobial activity of coupons containing 99 % copper and a brass alloy containing 63 % copper was assessed against stainless steel. All the materials demonstrated statistically significant differences within each other for the logarithmic reduction of microorganisms. Among the three materials, the highest reduction of microorganisms was seen in 99 % copper and the least in stainless steel. The result was statistically significant especially for 0, 2, and 4 h (P = 0.05). 99 % copper showed a bactericidal effect at less than 1 h for MRSA and at 2 h for P. aeruginosa. 63 % copper showed a bactericidal effect at 24 h for P. aeruginosa strains only. Stainless steel surfaces exhibited a bacteriostatic effect after 6 h for P. aeruginosa strains only. 99 % copper reduced the number of bacteria used significantly, produced a bactericidal effect and was more effective than 63 % copper. The use of metallic copper material could aid in reducing the concentration of bacteria, especially for invasive nosocomial pathogens on hard surfaces in the hospital environment.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Borkow G, Monk A (2012) Fighting nosocomial infections with biocidal non-intrusive hard and soft surfaces. World J Infect Dis 2:77–90

    Google Scholar 

  2. 2.

    Cervantes HI, Alvarez JA, Munoz JM, Arreguin V, Mosqueda JL, Macias AE (2013) Antimicrobial activity of copper against organisms in aqueous solution: a case for copper-based water pipelines in hospitals? Am J Infect Control 41:e115–e118

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Clinical and Laboratory Standards Institute (CLSI) (2013) Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement CLSI document M100-S23, Wayne, PA, USA

  4. 4.

    Efstathiou PA (2011) The role of antimicrobial copper surfaces in reducing healthcare-associated infections. Eur Infect Dis 5:125–128

    Google Scholar 

  5. 5.

    Espirito Santo C, Law EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ et al (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77:794–802

    PubMed  Article  Google Scholar 

  6. 6.

    Giske CG, Monnet DL, Cars O, Carmeli Y (2008) Clinical and economic impact of common multidrug resistant gram negative bacilli. Antimicrob Agents Chemother 52:813–821

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. 7.

    Gould SWJ, Fielder MD, Kelly AF, Morgan M, Kenny J, Naughton DP (2009) The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Ann Microbiol 59:151–156

    CAS  Article  Google Scholar 

  8. 8.

    Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1547

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. 9.

    Huang HI, Shih HY, Lee CM, Yang TC, Lay JJ, Lin YE (2008) In vitro efficacy of copper and silver ions in eradicating Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii: implications for on-site disinfection for hospital infection control. Water Res 42:73–80

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130

    PubMed Central  PubMed  Article  Google Scholar 

  11. 11.

    Maragakis LL (2010) Recognition and prevention of multidrug-resistant gram negative bacteria in the intensive care unit. Crit Care Med 38:345–351

    Article  Google Scholar 

  12. 12.

    Mathews S, Hans M, Mücklich F, Solioz M (2013) Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions. Appl Environ Microbiol 79:2605–2611

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. 13.

    Mehtar S, Wild I, Todorov SD (2008) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in vitro study. J Hosp Infect 68:45–51

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Michels HT, Noyce JO, Keevil CW (2009) Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Lett Appl Microbiol 49:191–195

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. 15.

    Monk AB, Kanmukhla V, Trinder K, Borkow G (2014) Potent bactericidal efficacy of copper oxide impregnated non-porous solid surfaces. BMC Microbiol 14:57

    PubMed Central  PubMed  Article  Google Scholar 

  16. 16.

    Noyce JO, Michels H, Keevil CW (2006) Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp Infect 63:289–297

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Noyce JO, Michels HT, Keevil CW (2006) Use of copper cast alloys to control Escherichia coli 0157 cross-contamination during food processing. Appl Environ Microbiol 72:4239–4244

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. 18.

    O’Gorman J, Humphreys H (2012) Application of copper to prevent and control infection. Where are we now? J Hosp Infect 81:217–223

    PubMed  Article  Google Scholar 

  19. 19.

    Peterson LR (2009) Bad bugs, no drugs: no ESCAPE revisited. Clin Infect Dis 49:992–993

    PubMed  Article  Google Scholar 

  20. 20.

    Santo CE, Morais PV, Grass G (2010) Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl Environ Microbiol 76:1341–1348

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Salgado CD, Sepkowitz KA, John JF (2013) Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol 34:479–486

    PubMed  Article  Google Scholar 

  22. 22.

    Souli M, Galani I, Plachouras D, Panagea T, Armaganidis A, Petrikkos G et al (2013) Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary Gram-negative clinical isolates. J Antimicrob Chemother 68:852–857

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Varghese S, ElFakhri SO, Sheel DW, Sheel P, Bolton FJE, Foster HA (2013) Antimicrobial activity of novel nanostructured Cu-SiO2 coatings prepared by chemical vapour deposition against hospital related pathogens. AMB Express 3:53

    PubMed Central  PubMed  Article  Google Scholar 

  24. 24.

    Warnes SL, Highmore CJ, Keevil CW (2012) Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: Implications for public health. mBio 3:e489–512

    Article  Google Scholar 

  25. 25.

    Warnes SL, Green SM, Michels HT, Keevil CW (2010) Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs. Appl Environ Microbiol 76:5390–5401

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Warnes SL, Keevil CW (2011) Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact. Appl Environ Microbiol 77:6049–6059

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  27. 27.

    Weber DJ, Anderson D, Rutala WA (2013) The role of the surface environment in healthcare-associated infections. Curr Opin Infect Dis 26:338–344

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This study was presented in the 114th General Meeting of the American Society for Microbiology, May 17–20, 2014, Boston, Massachusetts, USA. We would like to thank Selçuk Korkmaz (Hacettepe University, Department of Biostatistics) for interpreting the statistical analysis of the data and Tülay Özçelik for technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ozgen Koseoglu Eser.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koseoglu Eser, O., Ergin, A. & Hascelik, G. Antimicrobial Activity of Copper Alloys Against Invasive Multidrug-Resistant Nosocomial Pathogens. Curr Microbiol 71, 291–295 (2015). https://doi.org/10.1007/s00284-015-0840-8

Download citation

Keywords

  • Copper Alloy
  • Bactericidal Effect
  • Colistin
  • Acinetobacter Baumannii
  • Hospital Environment