Skip to main content

Advertisement

Log in

Phylogenomics of Mycobacterium Nitrate Reductase Operon

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blasco F, Iobbi C, Ratouchniak J, Bonnefoy V, Chippaux M (1990) Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Mol Gen Genet 222(1):104–111

    CAS  PubMed  Google Scholar 

  2. Knowles R (1982) Denitrification. Microbiol Rev 46(1):43–70

    CAS  PubMed Central  PubMed  Google Scholar 

  3. WHO publishes Global tuberculosis report 2013 (2013). Euro Surveill 18 (43). doi:20615 [pii]

  4. Chan J, Xing Y, Magliozzo RS, Bloom BR (1992) Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175(4):1111–1122

    Article  CAS  PubMed  Google Scholar 

  5. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94(10):5243–5248. doi:10.1073/pnas.94.10.5243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Mishra BB, Rathinam VA, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA, Sassetti CM (2013) Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1beta. Nat Immunol 14(1):52–60. doi:10.1038/ni.2474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Jung JY, Madan-Lala R, Georgieva M, Rengarajan J, Sohaskey CD, Bange FC, Robinson CM (2013) The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria. Infect Immun 81(9):3198–3209. doi:10.1128/IAI.00611-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Deturk WE, Bernheim F (1958) Effects of ammonia, methylamine, and hydroxylamine on the adaptive assimilation of nitrite and nitrate by a Mycobacterium. J Bacteriol 75(6):691–696

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Gonzalez PJ, Correia C, Moura I, Brondino CD, Moura JJ (2006) Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. J Inorg Biochem 100(5–6):1015–1023. doi:10.1016/j.jinorgbio.2005.11.024

    Article  CAS  PubMed  Google Scholar 

  10. Blasco F, Dos Santos JP, Magalon A, Frixon C, Guigliarelli B, Santini CL, Giordano G (1998) NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol Microbiol 28(3):435–447

    Article  CAS  PubMed  Google Scholar 

  11. Lanciano P, Vergnes A, Grimaldi S, Guigliarelli B, Magalon A (2007) Biogenesis of a respiratory complex is orchestrated by a single accessory protein. J Biol Chem 282(24):17468–17474. doi:10.1074/jbc.M700994200

    Article  CAS  PubMed  Google Scholar 

  12. Magalon A, Fedor JG, Walburger A, Weiner JH (2011) Molybdenum enzymes in bacteria and their maturation. Coordin Chem Rev 255(9–10):1159–1178. doi:10.1016/j.ccr.2010.12.031

    Article  CAS  Google Scholar 

  13. Rothery RA, Bertero MG, Spreter T, Bouromand N, Strynadka NC, Weiner JH (2010) Protein crystallography reveals a role for the FS0 cluster of Escherichia coli nitrate reductase A (NarGHI) in enzyme maturation. J Biol Chem 285(12):8801–8807. doi:10.1074/jbc.M109.066027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Sodergren EJ, DeMoss JA (1988) narI region of the Escherichia coli nitrate reductase (nar) operon contains two genes. J Bacteriol 170(4):1721–1729

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Chiang RC, Cavicchioli R, Gunsalus RP (1997) ‘Locked-on’ and ‘locked-off’ signal transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX sensors affect nitrate- and nitrite-dependent regulation by NarL and NarP. Mol Microbiol 24(5):1049–1060

    Article  CAS  PubMed  Google Scholar 

  16. Clegg S, Yu F, Griffiths L, Cole JA (2002) The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol Microbiol 44(1):143–155

    Article  CAS  PubMed  Google Scholar 

  17. Giffin MM, Raab RW, Morganstern M, Sohaskey CD (2012) Mutational analysis of the respiratory nitrate transporter NarK2 of Mycobacterium tuberculosis. PLoS One 7(9):e45459. doi:10.1371/journal.pone.0045459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sohaskey CD, Wayne LG (2003) Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 185(24):7247–7256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Conner R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence (vol 393, p 537, 1998). Nature 396(6707):190–198. doi:10.1038/24206

    Article  CAS  Google Scholar 

  20. Hutter B, Dick T (1999) Up-regulation of narX, encoding a putative ‘fused nitrate reductase’ in anaerobic dormant Mycobacterium bovis BCG. FEMS Microbiol Lett 178(1):63–69

    Article  CAS  PubMed  Google Scholar 

  21. Schnell R, Agren D, Schneider G (2008) 1.9 A structure of the signal receiver domain of the putative response regulator NarL from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 12):1096–1100. doi:10.1107/S1744309108035203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hu Y, Coates AR (2001) Increased levels of sigJ mRNA in late stationary phase cultures of Mycobacterium tuberculosis detected by DNA array hybridisation. FEMS Microbiol Lett 202(1):59–65

    Article  CAS  PubMed  Google Scholar 

  23. Lee H-N, Jung K-E, Ko I-J, Baik HS, Oh J-I (2012) Protein-protein interactions between histidine kinases and response regulators of Mycobacterium tuberculosis H37Rv. J Microbiol 50(2):270–277. doi:10.1007/s12275-012-2050-4

    Article  CAS  PubMed  Google Scholar 

  24. Cho HY, Kang BS (2014) Serine 83 in DosR, a response regulator from Mycobacterium tuberculosis, promotes its transition from an activated, phosphorylated state to an inactive, unphosphorylated state. Biochem Biophys Res Commun 444(4):651–655. doi:10.1016/j.bbrc.2014.01.128

    Article  CAS  PubMed  Google Scholar 

  25. Virtanen S (1960) A study of nitrate reduction by mycobacteria. The use of the nitrate reduction test in the identification of mycobacteria. Acta Tuberc Scand Suppl 48:1–119

    Article  CAS  PubMed  Google Scholar 

  26. Wayne LG, Doubek JR (1965) Classification and identification of mycobacteria. II. Tests employing nitrate and nitrite as substrate. Am Rev Respir Dis 91:738–745

    CAS  PubMed  Google Scholar 

  27. Stermann M, Sedlacek L, Maass S, Bange FC (2004) A promoter mutation causes differential nitrate reductase activity of Mycobacterium tuberculosis and Mycobacterium bovis. J Bacteriol 186(9):2856–2861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Stermann M, Bohrssen A, Diephaus C, Maass S, Bange FC (2003) Polymorphic nucleotide within the promoter of nitrate reductase (NarGHJI) is specific for Mycobacterium tuberculosis. J Clin Microbiol 41(7):3252–3259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Honaker RW, Stewart A, Schittone S, Izzo A, Klein MR, Voskuil MI (2008) Mycobacterium bovis BCG vaccine strains lack narK2 and narX induction and exhibit altered phenotypes during dormancy. Infect Immun 76(6):2587–2593. doi:10.1128/IAI.01235-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Chauhan S, Singh A, Tyagi JS (2010) A single-nucleotide mutation in the -10 promoter region inactivates the narK2X promoter in Mycobacterium bovis and Mycobacterium bovis BCG and has an application in diagnosis. FEMS Microbiol Lett 303(2):190–196. doi:10.1111/j.1574-6968.2009.01876.x

    Article  CAS  PubMed  Google Scholar 

  31. Sohaskey CD, Modesti L (2009) Differences in nitrate reduction between Mycobacterium tuberculosis and Mycobacterium bovis are due to differential expression of both narGHJI and narK2. FEMS Microbiol Lett 290(2):129–134. doi:10.1111/j.1574-6968.2008.01424.x

    Article  CAS  PubMed  Google Scholar 

  32. Tortoli E (2012) Phylogeny of the genus Mycobacterium: many doubts, few certainties. Infect Genet Evol 12(4):827–831. doi:10.1016/j.meegid.2011.05.025

    Article  PubMed  Google Scholar 

  33. Devulder G, Perouse de Montclos M, Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55(Pt 1):293–302. doi:10.1099/ijs.0.63222-0

    Article  CAS  PubMed  Google Scholar 

  34. Dos Vultos T, Mestre O, Rauzier J, Golec M, Rastogi N, Rasolofo V, Tonjum T, Sola C, Matic I, Gicquel B (2008) Evolution and diversity of clonal bacteria: the paradigm of Mycobacterium tuberculosis. PLoS One 3(2):e1538. doi:10.1371/journal.pone.0001538

    Article  PubMed Central  PubMed  Google Scholar 

  35. Nishimura T, Teramoto H, Vertes AA, Inui M, Yukawa H (2008) ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J Bacteriol 190(9):3264–3273. doi:10.1128/JB.01801-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nishimura T, Teramoto H, Inui M, Yukawa H (2014) Corynebacterium glutamicum ArnR controls expression of nitrate reductase operon narKGHJI and nitric oxide (NO)-detoxifying enzyme gene hmp in an NO-responsive manner. J Bacteriol 196(1):60–69. doi:10.1128/JB.01004-13

    Article  PubMed Central  PubMed  Google Scholar 

  37. Reents H, Gruner I, Harmening U, Bottger LH, Layer G, Heathcote P, Trautwein AX, Jahn D, Hartig E (2006) Bacillus subtilis Fnr senses oxygen via a [4Fe–4S] cluster coordinated by three cysteine residues without change in the oligomeric state. Mol Microbiol 60(6):1432–1445. doi:10.1111/j.1365-2958.2006.05198.x

    Article  CAS  PubMed  Google Scholar 

  38. Akhter Y, Yellaboina S, Farhana A, Ranjan A, Ahmed N, Hasnain SE (2008) Genome scale portrait of cAMP-receptor protein (CRP) regulons in mycobacteria points to their role in pathogenesis. Gene 407(1–2):148–158. doi:10.1016/j.gene.2007.10.017

    Article  CAS  PubMed  Google Scholar 

  39. Spreadbury CL, Pallen MJ, Overton T, Behr MA, Mostowy S, Spiro S, Busby SJ, Cole JA (2005) Point mutations in the DNA- and cNMP-binding domains of the homologue of the cAMP receptor protein (CRP) in Mycobacterium bovis BCG: implications for the inactivation of a global regulator and strain attenuation. Microbiology 151(Pt 2):547–556. doi:10.1099/mic.0.27444-0

    Article  CAS  PubMed  Google Scholar 

  40. Niemann V, Koch-Singenstreu M, Neu A, Nilkens S, Gotz F, Unden G, Stehle T (2013) The NreA protein functions as a nitrate receptor in the Staphylococcal nitrate regulation system. J Mol Biol. doi:10.1016/j.jmb.2013.12.026

    PubMed  Google Scholar 

  41. Florczyk MA, McCue LA, Purkayastha A, Currenti E, Wolin MJ, McDonough KA (2003) A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires rv3133c (dosR or devR) for expression. Infect Immun 71(9):5332–5343. doi:10.1128/Iai.71.9.5332-5343.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. McCaughey G, Gilpin DF, Schneiders T, Hoffman LR, McKevitt M, Elborn JS, Tunney MM (2013) Fosfomycin and tobramycin in combination downregulate nitrate reductase genes narG and narH, resulting in increased activity against Pseudomonas aeruginosa under anaerobic conditions. Antimicrob Agents Chemother 57(11):5406–5414. doi:10.1128/AAC.00750-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Cunningham-Bussel A, Zhang T, Nathan CF (2013) Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc Natl Acad Sci USA 110(45):E4256–E4265. doi:10.1073/pnas.1316894110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Weber I, Fritz C, Ruttkowski S, Kreft A, Bange FC (2000) Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol Microbiol 35(5):1017–1025

    Article  CAS  PubMed  Google Scholar 

  45. Ma Y, Guo C, Li H, Peng XX (2013) Low abundance of respiratory nitrate reductase is essential for Escherichia coli in resistance to aminoglycoside and cephalosporin. J Proteomics 87:78–88. doi:10.1016/j.jprot.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  46. Penuelas-Urquides K, Gonzalez-Escalante L, Villarreal-Trevino L, Silva-Ramirez B, Gutierrez-Fuentes DJ, Mojica-Espinosa R, Rangel-Escareno C, Uribe-Figueroa L, Molina-Salinas GM, Davila-Velderrain J, Castorena-Torres F, Bermudez de Leon M, Said-Fernandez S (2013) Comparison of gene expression profiles between pansensitive and multidrug-resistant strains of Mycobacterium tuberculosis. Curr Microbiol 67(3):362–371. doi:10.1007/s00284-013-0376-8

    Article  CAS  PubMed  Google Scholar 

  47. Cunningham-Bussel A, Bange FC, Nathan CF (2013) Nitrite impacts the survival of Mycobacterium tuberculosis in response to isoniazid and hydrogen peroxide. Microbiologyopen 2(6):901–911. doi:10.1002/mbo3.126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Wade MM, Zhang Y (2004) Anaerobic incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis. J Med Microbiol 53(Pt 8):769–773

    Article  CAS  PubMed  Google Scholar 

  49. Sohaskey CD (2008) Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J Bacteriol 190(8):2981–2986. doi:10.1128/JB.01857-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. McCollister BD, Hoffman M, Husain M, Vazquez-Torres A (2011) Nitric oxide protects bacteria from aminoglycosides by blocking the energy-dependent phases of drug uptake. Antimicrob Agents Chemother 55(5):2189–2196. doi:10.1128/AAC.01203-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Gusarov I, Shatalin K, Starodubtseva M, Nudler E (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325(5946):1380–1384. doi:10.1126/science.1175439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Angeby KA, Klintz L, Hoffner SE (2002) Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J Clin Microbiol 40(2):553–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Martin A, Imperiale B, Ravolonandriana P, Coban AY, Akgunes A, Ikram A, Satti L, Odoun M, Pandey P, Mishra M, Affolabi D, Singh U, Rasolofo V, Morcillo N, Vandamme P, Palomino JC (2014) Prospective multicentre evaluation of the direct nitrate reductase assay for the rapid detection of extensively drug-resistant tuberculosis. J Antimicrob Chemother 69(2):441–444. doi:10.1093/jac/dkt353

    Article  CAS  PubMed  Google Scholar 

  54. Nilkens S, Koch-Singenstreu M, Niemann V, Gotz F, Stehle T, Unden G (2014) Nitrate/oxygen co-sensing by an NreA/NreB sensor complex of Staphylococcus carnosus. Mol Microbiol 91(2):381–393. doi:10.1111/mmi.12464

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work funded by National Natural Science Foundation (Grant Nos. 81371851, 81071316, 81271882), New Century Excellent Talents in Universities (NCET-11-0703), National Megaprojects for Key Infectious Diseases (No. 2008ZX10003-006), Excellent PhD thesis fellowship of southwest university (Grant Nos. kb2009010 and ky2011003), the Fundamental Research Funds for the Central Universities (Grant Nos. XDJK2012D011, XDJK2013D003), Natural Science Foundation Project of CQ CSTC (Grant No. CSTC, 2010BB5002). The Chongqing Municipal Committee of Education for postgraduates excellence program (No. YJG123104), the Undergraduates Teaching Reform program (No. 2011JY052). The authors are grateful for the exchange students from College of Benediction/ Saint John University, Hasini Kalpage, Nhung Do, and Syn Ching for their suggestions on the manuscript.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Abdalla, A.E. & Xie, J. Phylogenomics of Mycobacterium Nitrate Reductase Operon. Curr Microbiol 71, 121–128 (2015). https://doi.org/10.1007/s00284-015-0838-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0838-2

Keywords

Navigation