Advertisement

Current Microbiology

, Volume 71, Issue 1, pp 106–114 | Cite as

Immobilized Hydrolytic Enzymes Exhibit Antibiofilm Activity Against Escherichia coli at Sub-Lethal Concentrations

  • Federica VillaEmail author
  • Francesco Secundo
  • Andrea Polo
  • Francesca Cappitelli
Article

Abstract

The effects of two commercially available immobilized enzymes (namely the glycosidase pectinase and the protease subtilisin A) at sub-lethal concentrations were investigated in terms of their influence on biofilm genesis, on the composition of the biofilm matrix, and their antibiotic synergy against Escherichia coli biofilm, used as a model system of bacterial biofilms. The best antibiofilm performance of solid-supported hydrolases was obtained at the surface concentration of 0.022 and 0.095 U/cm2 with a reduction of 1.2 and 2.3 log CFU/biofilm for pectinase and subtilisin, respectively. At these enzyme surface concentrations, the biocatalysts affected the structural composition of the biofilm matrix, impacting biofilm thickness. Finally, the immobilized hydrolases enhanced biofilm sensitivity to a clinically relevant concentration of the antibiotic ampicillin. At the final antibiotic concentration of 0.1 mg/ml, a reduction of 2 and 3.5 log10 units in presence of 0.022 Upectinase/cm2 and 0.095 Usubtilisin/cm2 was obtained, respectively, in comparison the antibiotic alone. Immobilized pectinase and subtilisin at sub-lethal concentrations demonstrated a great potential for antibiofilm applications.

Keywords

Immobilize Enzyme Triclosan Planktonic Growth Antibiofilm Activity Zosteric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Fondazione Cariplo, Grant no. 2011-0277.

References

  1. 1.
    Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114:131–138. doi: 10.1128/AAC.01789-12 PubMedCrossRefGoogle Scholar
  2. 2.
    Augustin M, Ali-Vehmas T, Atroshi F (2004) Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. J Pharm Pharm Sci 7:55–64PubMedGoogle Scholar
  3. 3.
    Barbosa O, Ortiz C, Berenguer-Murcia A, Torres R, Rodrigues RC, Fernandez-Lafuente R (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600. doi: 10.1039/C3RA45991H CrossRefGoogle Scholar
  4. 4.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  5. 5.
    Cappitelli F, Polo A, Villa F (2014) Biofilm formation in food processing environments is still poorly understood and controlled. Food Eng Rev 6:29–42. doi: 10.1007/s12393-014-9077-8 CrossRefGoogle Scholar
  6. 6.
    Cappitelli F, Zanardini E, Sorlini C (2004) The biodeterioration of synthetic resins used in conservation. Macromol Biosci 4:399–406. doi: 10.1002/mabi.200300055 PubMedCrossRefGoogle Scholar
  7. 7.
    Chaignon P, Sadovskaya I, Ragunah Ch, Ramasubbu N, Kaplan JB, Jabbouri S (2007) Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75:125–132. doi: 10.1007/s00253-006-0790-y PubMedCrossRefGoogle Scholar
  8. 8.
    Cordeiro AL, Hippius C, Werner C (2011) Immobilized enzymes affect biofilm formation. Biotechnol Lett 33:1897–1904. doi: 10.1007/s10529-011-0643-3 PubMedCrossRefGoogle Scholar
  9. 9.
    Corinaldesi C, Danovaro R, Dell’Anno A (2005) Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments. Appl Environ Microbiol 71:46–50. doi: 10.1128/AEM.71.1.46-50.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S (2009) Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination. J Antimicrob Chemother 64:88–93. doi: 10.1093/jac/dkp158 PubMedCrossRefGoogle Scholar
  11. 11.
    Elchinger PH, Delattre C, Faure S, Roy O, Badel S, Bernardi T, Taillefumier C, Michaud P (2015) Immobilization of proteases on chitosan for the development of films with anti-biofilm properties. Int J Biol Macromol 72:1063–1068. doi: 10.1016/j.ijbiomac.2014.09.061 PubMedCrossRefGoogle Scholar
  12. 12.
    Flemming HC (2011) Microbial biofouling: unsolved problems, insufficient approaches, and possible solutions. In: Flemming HC et al (eds) Biofilm highlights, springer series on biofilms 5. Springer, BerlinGoogle Scholar
  13. 13.
    Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi: 10.1038/nrmicro2415 PubMedGoogle Scholar
  14. 14.
    Giacomucci L, Toja F, Sanmartín P, Toniolo L, Prieto B, Villa F, Cappitelli F (2012) Degradation of nitrocellulose-based paint by Desulfovibrio desulfuricans ATCC 13541. Biodegradation 23:705–716. doi: 10.1007/s10532-012-9546-9 PubMedCrossRefGoogle Scholar
  15. 15.
    Hangler M, Burmølle M, Schneider I, Allermann K, Jensen B (2009) The serine protease Esperase HPF inhibits the formation of multispecies biofilm. Biofouling 25:667–674. doi: 10.1080/08927010903096008 PubMedCrossRefGoogle Scholar
  16. 16.
    Herigstad B, Hamilton M, Heersink J (2001) How to optimize the drop plate method for enumerating bacteria. J Microbiol Methods 44:121–129. doi: 10.1016/S0167-7012(00)00241-4 PubMedCrossRefGoogle Scholar
  17. 17.
    Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175. doi: 10.1038/nature03912 PubMedCrossRefGoogle Scholar
  18. 18.
    Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332. doi: 10.1016/j.ijantimicag.2009.12.011 PubMedCrossRefGoogle Scholar
  19. 19.
    Ikegaki N, Kennett RH (1989) Glutaraldehyde fixation of the primary antibody-antigen complex on nitrocellulose paper increases the overall sensitivity of immunoblot assay. J Immunol Methods 124:205–210. doi: 10.1016/0022-1759(89)90354-2 PubMedCrossRefGoogle Scholar
  20. 20.
    Kaplan JB (2009) Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs 32:545–554PubMedGoogle Scholar
  21. 21.
    Kiran S, Sharma P, Harjai K, Capalash N (2011) Enzymatic quorum quenching increases antibiotic susceptibility of multidrug resistant Pseudomonas aeruginosa. Iran J Microbiol 3:1–12PubMedCentralPubMedGoogle Scholar
  22. 22.
    Kristensen JB, Meyer RL, Laursen BS, Shipovskov S, Besenbacher F, Poulsen CH (2008) Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv 26:471–481. doi: 10.1016/j.biotechadv.2008.05.005 PubMedCrossRefGoogle Scholar
  23. 23.
    Kumar A, Kanwar SS (2012) Catalytic potential of a nitrocellulose membrane-immobilized lipase in aqueous and organic media. J App Polym Sci 124:E37–E44. doi: 10.1002/app.35434 CrossRefGoogle Scholar
  24. 24.
    Ledder RG, Madhwani T, Sreenivasan PK, De Vizio W, McBain AJ (2009) An in vitro evaluation of hydrolytic enzymes as dental plaque control agents. J Med Microbiol 58:482–491. doi: 10.1099/jmm.0.006601-0 PubMedCrossRefGoogle Scholar
  25. 25.
    Lequette Y, Boels G, Clarisse M, Faille C (2010) Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling 26:421–431. doi: 10.1080/08927011003699535 PubMedCrossRefGoogle Scholar
  26. 26.
    Leroy C, Delbarre C, Ghillebaert F, Compere C, Combes D (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24:11–22. doi: 10.1080/08927010701784912 PubMedCrossRefGoogle Scholar
  27. 27.
    Leroy C, Delbarre C, Ghillebaert F, Compere C, Combes D (2008) Influence of subtilisin on the adhesion of a marine bacterium which produces mainly proteins as extracellular polymers. J Appl Microbiol 105:791–799. doi: 10.1111/j.1365-2672.2008.03837.x PubMedCrossRefGoogle Scholar
  28. 28.
    Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 103:19484–19489. doi: 10.1073/pnas.0608949103 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Longhi C, Scoarughi GL, Poggiali F, Cellini A, Carpentieri A, Seganti L, Pucci P, Amoresano A, Cocconcelli PS, Artini M, Costerton JW, Selan L (2008) Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microb Pathog 45:45–52. doi: 10.1016/j.micpath.2008.01.007 PubMedCrossRefGoogle Scholar
  30. 30.
    Lopes FA, Morin P, Oliveira R, Melo LF (2006) Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. J Appl Microbiol 101:1087–1095. doi: 10.1111/j.1365-2672.2006.03001.x PubMedCrossRefGoogle Scholar
  31. 31.
    Marcato-Romain CE, Pechaud Y, Paul E, Girbal-Neuhauser E, Dossat-Létisse V (2012) Removal of microbial multi-species biofilms from the paper industry by enzymatic treatments. Biofouling 28:305–314. doi: 10.1080/08927014.2012.673122 PubMedCrossRefGoogle Scholar
  32. 32.
    Martins M, Henriques M, Lopez-Ribot JL, Oliveira R (2012) Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55:80–85. doi: 10.1111/j.1439-0507.2011.02047.x PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC (2005) Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 339:69–72. doi: 10.1016/j.ab.2004.12.001 PubMedCrossRefGoogle Scholar
  34. 34.
    Migliore L, Rotini A, Thaller MC (2013) Low doses of tetracycline trigger the E. coli growth: a case of hormetic response. Dose Response 11:550–557. doi: 10.2203/dose-response.13-002.Migliore.eCollection PubMedCrossRefGoogle Scholar
  35. 35.
    Pace JL, Rupp ME, Finch RG (2006) Biofilms, Infection, and Antimicrobial Therapy. CRC Press, Boca Raton, FLGoogle Scholar
  36. 36.
    Pavlukhina SV, Kaplan JB, Xu L, Chang W, Yu X, Madhyastha S, Yakandawala N, Mentbayeva A, Khan B, Sukhishvili SA (2012) Noneluting enzymatic antibiofilm coatings. ACS Appl Mater Interfaces 4:4708–4716. doi: 10.1021/am3010847 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Polo A, Diamanti MV, Bjarnsholt T, Høiby N, Villa F, Pedeferri MP, Cappitelli F (2011) Effects of photoactivated titanium dioxide nanopowders and coating on planktonic and biofilm growth of Pseudomonas aeruginosa. Photochem Photobiol 87:1387–1394. doi: 10.1111/j.1751-1097.2011.00972.x PubMedCrossRefGoogle Scholar
  38. 38.
    Regina VR, Søhoel H, Lokanathan AR, Bischoff C, Kingshott P, Revsbech NP, Meyer RL (2012) Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications. ACS Appl Mater Interfaces 4:5915–5921. doi: 10.1021/am301554m PubMedCrossRefGoogle Scholar
  39. 39.
    Ren D, Zuo R, González Barrios AF, Bedzyk LA, Eldridge GR, Pasmore ME, Wood TK (2005) Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl Environ Microbiol 71:4022–4034. doi: 10.1128/AEM.71.7.4022-4034.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Rickard AH, Palmer RJ, Blehert DS, Campagna SR, Semmelhack MF, Egland PG, Bassler BL, Kolenbrander PE (2006) Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 60:1446–1456. doi: 10.1111/j.1365-2958.2006.05202.x PubMedCrossRefGoogle Scholar
  41. 41.
    Salta M, Wharton JA, Dennington SP, Stoodley P, Stokes KR (2013) Antibiofilm performance of three natural products against initial bacterial attachment. Int J Mol Sci 14:21757–21780. doi: 10.3390/ijms141121757 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Secundo F, Barletta GL, Parini G, Roda G (2012) Effects of stabilizing additives on the activity of alpha-chymotrypsin in organic solvent. J Mol Catal B Enzym 84:128–131. doi: 10.1016/j.molcatb.2012.04.008 CrossRefGoogle Scholar
  43. 43.
    Srey S, Jahid IK, Ha SD (2013) Biofilm formation in food industries: a food safety concern. Food Control 31:572–585. doi: 10.1016/j.foodcont.2012.12.001 CrossRefGoogle Scholar
  44. 44.
    Swartjes JJTM, Das T, Sharifi S, Subbiahdoss G, Sharma PK, Krom BP, Busscher HJ, van der Mei HC (2013) A functional DNase I coating to prevent adhesion of bacteria and the formation of biofilm. Adv Funct Mater 23:2843–2849. doi: 10.1002/adfm.201202927 CrossRefGoogle Scholar
  45. 45.
    Tasso M, Pettitt ME, Cordeiro AL, Callow ME, Callow JA, Werner C (2009) Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films. Biofouling 25:505–516. doi: 10.1080/08927010902930363 PubMedCrossRefGoogle Scholar
  46. 46.
    Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53:1204–1209. doi: 10.1128/AAC.00471-08 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Tielen P, Rosenau F, Wilhelm S, Jaeger KE, Flemming HC, Wingender J (2010) Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. Microbiology 156:2239–2252. doi: 10.1099/mic.0.037036-0 PubMedCrossRefGoogle Scholar
  48. 48.
    Vázquez-Sánchez D, Habimana O, Holck A (2013) Impact of food-related environmental factors on the adherence and biofilm formation of natural Staphylococcus aureus isolates. Curr Microbiol 66:110–121. doi: 10.1007/s00284-012-0247-8 PubMedCrossRefGoogle Scholar
  49. 49.
    Villa F, Albanese D, Giussani B, Stewart PS, Daffonchio D, Cappitelli F (2010) Hindering biofilm formation with zosteric acid. Biofouling 26:739–752. doi: 10.1080/08927014.2010.511197 PubMedCrossRefGoogle Scholar
  50. 50.
    Villa F, Cappitelli F (2013) Plant-derived bioactive compounds at sub-lethal concentrations: towards smart biocide-free antibiofilm strategies. Phytochem Rev 12:245–254. doi: 10.1007/s11101-013-9286-4 CrossRefGoogle Scholar
  51. 51.
    Villa F, Pitts B, Stewart PS, Giussani B, Roncoroni S, Albanese D, Giordano C, Tunesi M, Cappitelli F (2011) Efficacy of zosteric acid sodium salt on the yeast biofilm model Candida albicans. Microb Ecol 62:584–598PubMedCrossRefGoogle Scholar
  52. 52.
    Villa F, Remelli W, Forlani F, Gambino M, Landini P, Cappitelli F (2012) Effects of chronic sub-lethal oxidative stress on biofilm formation by Azotobacter vinelandii. Biofouling 28:823–833. doi: 10.1080/08927014.2012.715285 PubMedCrossRefGoogle Scholar
  53. 53.
    Villa F, Villa S, Gelain A, Cappitelli F (2013) Sub-lethal activity of small molecules from natural sources and their synthetic derivatives against biofilm forming nosocomial pathogens. Curr Top Med Chem 13:3184–3204. doi: 10.2174/15680266113136660225 PubMedCrossRefGoogle Scholar
  54. 54.
    Wang X, Lünsdorf H, Ehrén I, Brauner A, Römling U (2010) Characteristics of biofilms from urinary tract catheters and presence of biofilm-related components in Escherichia coli. Curr Microbiol 60:446–453. doi: 10.1007/s00284-009-9563-z PubMedCrossRefGoogle Scholar
  55. 55.
    Wingender J, Strathmann M, Rode A, Leis A, Flemming HC (2001) Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzymol 336:302–314. doi: 10.1016/S0076-6879(01)36597-7 PubMedGoogle Scholar
  56. 56.
    Yu J, Kim D, Lee T (2010) Microbial diversity in biofilms on water distribution pipes of different materials. Water Sci Technol 61:163–171. doi: 10.2166/wst.2010.813 PubMedCrossRefGoogle Scholar
  57. 57.
    Yuan S, Yin J, Jiang W, Liang B, Pehkonen SO, Choong C (2013) Enhancing antibacterial activity of surface-grafted chitosan with immobilized lysozyme on bioinspired stainless steel substrates. Colloids Surf B Biointerfaces 106:11–21. doi: 10.1016/j.colsurfb.2012.12.048 PubMedCrossRefGoogle Scholar
  58. 58.
    Zanaroli G, Negroni A, Calisti C, Ruzzi M, Fava F (2011) Selection of commercial hydrolytic enzymes with potential antifouling activity in marine environments. Enzyme Microb Technol 49:574–579. doi: 10.1016/j.enzmictec.2011.05.008 PubMedCrossRefGoogle Scholar
  59. 59.
    Zuroff TR, Bernstein H, Lloyd-Randolfi J, Jimenez-Taracido L, Stewart PS, Carlson RP (2010) Robustness analysis of culturing perturbations on Escherichia coli colony biofilm beta-lactam and aminoglycoside antibiotic tolerance. BMC Microbiol 10:185. doi: 10.1186/1471-2180-10-185 PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Zwietering MH, Jongenburger I, Rombouts FM, van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Federica Villa
    • 1
    Email author
  • Francesco Secundo
    • 2
  • Andrea Polo
    • 1
  • Francesca Cappitelli
    • 1
  1. 1.Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’AmbienteUniversità degli Studi di MilanoMilanItaly
  2. 2.Istituto di Chimica del Riconoscimento Molecolare, CNRMilanItaly

Personalised recommendations