Skip to main content
Log in

The Antibacterial Effects of an Antimicrobial Peptide Human β-Defensin 3 Fused with Carbohydrate-Binding Domain on Pseudomonas aeruginosa PA14

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is one of the most opportunistic bacterial pathogens in human communities. Being a potential antibacterial agent, antimicrobial peptide human β-defensin 3-carbohydrate-binding domain (hBD3-CBD) was evaluated in this study by in vitro bactericidal test, special gene expressions, hBD3-CBD effects on biofilm formation assays, swimming, twitching, and swarming activities of P. aeruginosa PA14, and hBD3-CBD effects on the antibiotic 50 % minimal inhibitory concentration (MIC50) and 90 % minimal inhibitory concentration (MIC90) against clinical P. aeruginosa isolates. The MIC against P. aeruginosa PA14 was 32 μg/ml; hBD3-CBD showed significant bactericidal activities when the concentration reached 8 μg/ml, and when the concentration reached 2 μg/ml, hBD3-CBD successfully repressed the biofilm productions in P. aeruginosa PA14. hBD3-CBD could inhibit the in vitro swimming, twitching, and swarming activities of P. aeruginosa PA14. When 5 μg/ml hBD3-CBD was combined with antibiotics, it decreased the MIC50 and MIC90 of tetracycline, rifampicin, and streptomycin against clinical P. aeruginosa isolates. As new antibacterial agents, hBD3-CBD and other AMPs might be used together with antibiotics to deal with infections in the future, especially the skin and soft tissue infections of drug-resistant P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bodey GP, Bolivar R, Fainstein V, Jadeja L (1983) Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 5:279–313

    Article  CAS  PubMed  Google Scholar 

  2. Rossolini GM, Mantengoli E (2005) Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 11(Suppl 4):17–32

    Article  CAS  PubMed  Google Scholar 

  3. Obritsch MD, Fish DN, MacLaren R, Jung R (2005) Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 25:1353–1364

    Article  CAS  PubMed  Google Scholar 

  4. Fischetti VA (2001) Phage antibacterials make a comeback. Nat Biotechnol 19:734–735

    Article  CAS  PubMed  Google Scholar 

  5. Parisien A, Allain B, Zhang J, Mandeville R, Lan CQ (2008) Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 104:1–13

    CAS  PubMed  Google Scholar 

  6. Lee JK, Chang SW, Perinpanayagam H, Lim SM, Park YJ, Han SH, Baek SH, Zhu Q, Bae KS, Kum KY (2013) Antibacterial efficacy of a human beta-defensin-3 peptide on multispecies biofilms. J Endod 39:1625–1629

    Article  PubMed  Google Scholar 

  7. Li Q, Huang J, Guo H, Guo X, Zhu Y, Dong K (2012) Bactericidal activity against meticillin-resistant Staphylococcus aureus of a novel eukaryotic therapeutic recombinant antimicrobial peptide. Int J Antimicrob Agents 39:496–499

    Article  CAS  PubMed  Google Scholar 

  8. Samy RP, Thwin MM, Chow VT, Bow H, Gopalakrishnakone P (2011) Evaluation of antibacterial activity of proteins and peptides using a specific animal model for wound healing. Methods Mol Biol 716:245–265

    Article  CAS  PubMed  Google Scholar 

  9. Miki T, Holst O, Hardt WD (2012) The bactericidal activity of the C-type lectin RegIIIbeta against Gram-negative bacteria involves binding to lipid A. J Biol Chem 287:34844–34855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Jones C, Hachani A, Manoli E, Filloux A (2014) An rhs gene linked to the second type VI secretion cluster is a feature of the Pseudomonas aeruginosa strain PA14. J Bacteriol 196:800–810

    Article  PubMed Central  PubMed  Google Scholar 

  11. Schaber JA, Carty NL, McDonald NA, Graham ED, Cheluvappa R, Griswold JA, Hamood AN (2004) Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 53:841–853

    Article  CAS  PubMed  Google Scholar 

  12. Darzins A (1993) The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY. J Bacteriol 175:5934–5944

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Glessner A, Smith RS, Iglewski BH, Robinson JB (1999) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. J Bacteriol 181:1623–1629

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Li Q, Zhou Y, Dong K, Guo X (2010) Potential therapeutic efficacy of a bactericidal-immunomodulatory fusion peptide against methicillin-resistant Staphylococcus aureus skin infection. Appl Microbiol Biotechnol 86:305–309

    Article  CAS  PubMed  Google Scholar 

  15. Zhu C, Tan H, Cheng T, Shen H, Shao J, Guo Y, Shi S, Zhang X (2013) Human beta-defensin 3 inhibits antibiotic-resistant Staphylococcus biofilm formation. J Surg Res 183:204–213

    Article  CAS  PubMed  Google Scholar 

  16. Bardoel BW, van Kessel KP, van Strijp JA, Milder FJ (2012) Inhibition of Pseudomonas aeruginosa virulence: characterization of the AprA-AprI interface and species selectivity. J Mol Biol 415:573–583

    Article  CAS  PubMed  Google Scholar 

  17. Medina G, Juarez K, Valderrama B, Soberon-Chavez G (2003) Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol 185:5976–5983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci USA 110:17981–17986

    Article  PubMed Central  PubMed  Google Scholar 

  19. Li P, Poon YF, Li W, Zhu HY, Yeap SH, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman RW, Kang ET, Mu Y, Li CM, Chang MW, Leong SS, Chan-Park MB (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10:149–156

    Article  CAS  PubMed  Google Scholar 

  20. Ochsner UA, Vasil ML, Alsabbagh E, Parvatiyar K, Hassett DJ (2000) Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: oxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol 182:4533–4544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Donlan RM (2011) Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Clin Infect Dis 52:1038–1045

    Article  PubMed  Google Scholar 

  22. Hengzhuang W, Hoiby N, Ciofu O (2014) Pharmacokinetics and pharmacodynamics of antibiotics in biofilm infections of Pseudomonas aeruginosa in vitro and in vivo. Methods Mol Biol 1147:239–254

    Article  PubMed  Google Scholar 

  23. Kumar L, Chhibber S, Harjai K (2013) Zingerone inhibit biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia 90:73–78

    Article  CAS  PubMed  Google Scholar 

  24. Dawgul M, Maciejewska M, Jaskiewicz M, Karafova A, Kamysz W (2014) Antimicrobial peptides as potential tool to fight bacterial biofilm. Acta Pol Pharm 71:39–47

    CAS  PubMed  Google Scholar 

  25. Mulet X, Cabot G, Ocampo-Sosa AA, Dominguez MA, Zamorano L, Juan C, Tubau F, Rodriguez C, Moya B, Pena C, Martinez-Martinez L, Oliver A, Spanish Network for Research in Infectious D (2013) Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agents Chemother 57:5527–5535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kao CY, Sheu BS, Sheu SM, Yang HB, Chang WL, Cheng HC, Wu JJ (2012) Higher motility enhances bacterial density and inflammatory response in dyspeptic patients infected with Helicobacter pylori. Helicobacter 17:411–416

    Article  PubMed  Google Scholar 

  27. Perez-Osorio AC, Williamson KS, Franklin MJ (2010) Heterogeneous rpoS and rhlR mRNA levels and 16S rRNA/rDNA (rRNA gene) ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection. J Bacteriol 192:2991–3000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tremblay J, Deziel E (2010) Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genom 11:587

    Article  Google Scholar 

  29. Li Y, Qu HP, Liu JL, Wan HY (2014) Correlation between group behavior and quorum sensing in Pseudomonas aeruginosa isolated from patients with hospital-acquired pneumonia. J Thorac Dis 6:810–817

    PubMed Central  PubMed  Google Scholar 

  30. Steindler L, Bertani I, De Sordi L, Schwager S, Eberl L, Venturi V (2009) LasI/R and RhlI/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl Environ Microbiol 75:5131–5140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Schertzer JW, Brown SA, Whiteley M (2010) Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol Microbiol 77:1527–1538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Guo Q, Kong W, Jin S, Chen L, Xu Y, Duan K (2014) PqsR-dependent and PqsR-independent regulation of motility and biofilm formation by PQS in Pseudomonas aeruginosa PAO1. J Basic Microbiol 54:633–643

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (#81201334) and Shanghai Key Laboratory of Psychotic Disorders 13dz2260500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingtian Li.

Additional information

Ping Lin and Yong Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, P., Li, Y., Dong, K. et al. The Antibacterial Effects of an Antimicrobial Peptide Human β-Defensin 3 Fused with Carbohydrate-Binding Domain on Pseudomonas aeruginosa PA14. Curr Microbiol 71, 170–176 (2015). https://doi.org/10.1007/s00284-015-0814-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0814-x

Keywords

Navigation