Skip to main content

Advertisement

Log in

Protection Against 1,2-Di-methylhydrazine-Induced Systemic Oxidative Stress and Altered Brain Neurotransmitter Status by Probiotic Escherichia coli CFR 16 Secreting Pyrroloquinoline Quinone

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Exposure to environmental pollutant 1,2-dimethylhydrazine (DMH) is attributed to systemic oxidative stress and is known to cause neurotropic effect by altering brain neurotransmitter status. Probiotics are opted as natural therapeutic against oxidative stress and also have the ability to modulate gut–brain axis. Pyrroloquinoline quinone (PQQ) is water-soluble, heat-stable antioxidant molecule. Aim of the present study was to evaluate the antioxidant efficacy of PQQ-producing probiotic E. coli CFR 16 on DMH-induced systemic oxidative damage and altered neurotransmitter status in rat brain. Adult virgin Charles Forster rats (200–250 g) were given DMH dose (25 mg/kg body weight, s.c.) for 8 weeks. Blood lipid peroxidation levels exhibited a marked increase while antioxidant enzyme activities of superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase and glutathione peroxidase were found to be reduced in DMH-treated rats. Likewise, brain serotonin and norepinephrine levels displayed a significant decrease, whereas epinephrine levels demonstrated a marked increase in brain of these rats. PQQ-producing E. coli CFR 16 supplementation reduced systemic oxidative stress and also restored brain neurotransmitter status. However, E. coli CFR 16 did not show any effect on these parameters. In contrast, E. coli CFR 16:: vgbgfp and E. coli CFR 16:: vgbgfp vector exhibited some degree of protection again oxidative stress but they were not able to modulate neurotransmitter levels. In conclusion, continuous and sustained release of PQQ by probiotic E. coli in rat intestine ameliorates systemic oxidative stress and restored brain neurotransmitter levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amaretti A, di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A (2013) Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 97:809–817

    Article  CAS  PubMed  Google Scholar 

  2. Andersson KE, Wein AJ (2004) Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev 56:581–631

    Article  CAS  PubMed  Google Scholar 

  3. Arutjunyan AV, Kerkeshko GO, Anisimov VN, Stepanov MG, Prokopenko VM, Pozdeyev NV, Korenevsky AV (2001) Disturbance of diurnal rhythms of biogenic amines contents in hypothalamic nuclei as an evidence of neurotrophic effects of entrotropic carcinogen 1, 2-dimethylhydrazine. Neuro Endocrinol Lett. 22:229–237

    CAS  PubMed  Google Scholar 

  4. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23:1132–1139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bouayed J, Bohn T (2010) Exogenous antioxidants—double-edged sword in cellular redox state Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 3:228–237

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108:16050–16055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cerutti PA (1994) Oxyradicals and cancer. Lancet 344:862–863

    Article  CAS  PubMed  Google Scholar 

  8. Choi O, Kim J, Kim JG, Jeong Y, Moon JS, Park CS, Hwang I (2008) Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Collado MC, Bäuerl C, Martínez GP (2012) Defining microbiota for developing new probiotics. Microb Ecol Health Dis. doi:10.3402/mehd.v23i0.18579

    PubMed Central  PubMed  Google Scholar 

  10. Curzon G, Green AR (1970) Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain. Br J Pharmacol 39:653–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Eisenberg RC, Dobrogosz WJ (1967) Gluconate metabolism in Escherichia coli. J Bacteriol 93:941–949

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Feng ZH, Lei WU, Ming LU, Yu-lin HU, Xiao H, Zheng-qiang L (2011) Structure characteristic and catalase activity of Vitreoscilla hemoglobin bound with membrane. Chem Res Chin Univ 27:450–454

    Google Scholar 

  14. Fiala ES, Kulakis C, Christiansen G, Weisburger JH (1978) Inhibition of the metabolism of the colon carcinogen, azoxymethane, by pyrazole. Cancer Res 38:4515–4521

    CAS  PubMed  Google Scholar 

  15. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  16. Genc S, Zadeoglulari Z, Fuss SH, Genc K (2012) The adverse effects of air pollution on the nervous system. J Toxicol. doi:10.1155/2012/782462

    PubMed Central  PubMed  Google Scholar 

  17. Ghosh NC, Deb C, Banerjee S (1951) Colorimetric determination of epinephrine in blood and adrenal gland. J Biol Chem 192:867–874

    CAS  PubMed  Google Scholar 

  18. Gyaneshwar P, Kumar GN, Parekh LJ (1998) Effect of buffering on the phosphate-solubilizing ability of microorganisms. World J Microbiol Biotechnol 14:669–673

    Article  CAS  Google Scholar 

  19. Harzallah JH, Grayaa R, Kharoubi W, Maaloul A, Hammami M, Mahjoub T (2012) Thymoquinone, the Nigella sativa bioactive compound, prevents circulatory oxidative stress caused by 1,2-dimethylhydrazine in erythrocyte during colon post initiation carcinogenesis oxidative medicine and cellular longevity. Oxid Med Cell Longev. doi:10.1155/2012/854065

    PubMed  Google Scholar 

  20. Hou Y, Wang L, Zhang W, Yang Z, Ding B, Zhu H, Liu Y, Qiu Y, Yin Y, Wu G (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233–1242

    Article  CAS  PubMed  Google Scholar 

  21. Jacobowitz DM, Richardson JS (1978) Method for the rapid determination of norepinephrine, dopamine, and serotonin in the same brain region. Pharmacol Biochem Behav 8:515–519

    Article  CAS  PubMed  Google Scholar 

  22. Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. Cell Mol Med 14:457–487

    Article  CAS  Google Scholar 

  23. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  24. Kumar P, Ferzin S, Chintan S (2009) isolation and characterization of potential probiotic Escherichia coli strains from rat faecal samples. Amer J Infect Dis 5:112–117

    Article  Google Scholar 

  25. Kumar P, Ranawade AV, Kumar GN (2014) Potential probiotic Escherichia coli 16 harboring the Vitreoscilla hemoglobin gene improve gastrointestinal tract colonization and ameliorate carbon tetrachloride induced hepatotoxicity in rats. BioMed Res Int. doi:10.1155/2014/213574

    Google Scholar 

  26. Mathew CM, Ervin AM, Tao A, Davis RM (2012) Antioxidant vitamin supplementation for preventing and slowing the progression of age-related cataract. Cochrane Database Syst Rev 6:CD004567. doi:10.1002/14651858

    PubMed  Google Scholar 

  27. Misra HS, Rajpurohit YS, Khairnar NP (2012) Pyrroloquinoline-quinone and its versatile roles in biological processes. J Biosci 37:313–325

    Article  CAS  PubMed  Google Scholar 

  28. Miyauchi K, Urakami T, Aabeta H, Shi H, Noguchi N, Niki E (1999) Action of pyrroloquinolinequinol as an antioxidant against lipid peroxidation in solution. Antioxid Redox Signal 1:547–554

    Article  CAS  PubMed  Google Scholar 

  29. Moro MA, Almeida A, Bolaños JP, Lizasoain I (2005) Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 39:1291–1304

    Article  CAS  PubMed  Google Scholar 

  30. Nutt D, Demyttenaere K, Janka Z, Aarre T, Bourin M, Canonico PL, Carrasco JL, Stahl S (2007) The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J Psychopharmacol 21:461–471

    Article  CAS  PubMed  Google Scholar 

  31. Pandey S, Ashish S, Kumar P, Chaudhari A, Nareshkumar G (2014) Probiotic Escherichia coli CFR 16 producing pyrroloquinoline quinone (PQQ) ameliorates 1,2-dimethylhydrazine-induced oxidative damage in colon and liver of rats. Appl Biochem Biotechnol 173:775–786

    Article  CAS  PubMed  Google Scholar 

  32. Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B (1998) Conjugates of catecholamine with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem 77:2112–2122

    Google Scholar 

  33. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wrona MZ, Dryhurst G (1998) Oxidation of serotonin by superoxide radical: implications to neurodegenerative brain disorders. Chem Res Toxicol 11:639–650

    Article  CAS  PubMed  Google Scholar 

  35. Yang W, Omaye ST (2009) Air pollutants, oxidative stress and human health. Mutat Res 674:45–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mr. Ashish Singh was supported by CSIR-JRF, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Naresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Singh, A., Chaudhari, N. et al. Protection Against 1,2-Di-methylhydrazine-Induced Systemic Oxidative Stress and Altered Brain Neurotransmitter Status by Probiotic Escherichia coli CFR 16 Secreting Pyrroloquinoline Quinone. Curr Microbiol 70, 690–697 (2015). https://doi.org/10.1007/s00284-014-0763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0763-9

Keywords

Navigation