Current Microbiology

, Volume 70, Issue 3, pp 355–363

Genome Sequence and Phenotypic Characterization of Caulobacter segnis

  • Sagar Patel
  • Brock Fletcher
  • Derrick C. Scott
  • Bert Ely
Article

Abstract

Caulobacter segnis is a unique species of Caulobacter that was initially deemed Mycoplana segnis because it was isolated from soil and appeared to share a number of features with other Mycoplana. After a 16S rDNA analysis showed that it was closely related to Caulobactercrescentus, it was reclassified C. segnis. Because the C.segnis genome sequence available in GenBank contained 126 pseudogenes, we compared the original sequencing data to the GenBank sequence and determined that many of the pseudogenes were due to sequence errors in the GenBank sequence. Consequently, we used multiple approaches to correct and reannotate the C. segnis genome sequence. In total, we deleted 247 bp, added 14 bp, and changed 8 bp resulting in 233 fewer bases in our corrected sequence. The corrected sequence contains only 15 pseudogenes compared to 126 in the original annotation. Furthermore, we found that unlike Mycoplana, C. segnis divides by fission, producing swarmer cells that have a single, polar flagellum.

Supplementary material

284_2014_726_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 39 kb)

References

  1. 1.
    Abraham WR, Strompl C, Meyer H, Lindholst S, Moore E, Christ R, Vancanneyt M, Tindali BJ, Bennasar A, Smit J, Tesar M (1999) Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int J Syst Bacteriol 49:1053–1073. doi:10.1099/00207713-49-3-1053 PubMedCrossRefGoogle Scholar
  2. 2.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410 PMCID: PMC146917PubMedCrossRefGoogle Scholar
  3. 3.
    Ash K, Brown T, Watford T, Scott LE, Stephens C, Ely B (2014) A comparison of the Caulobacter NA1000 and K31 genomes reveals extensive genome rearrangements and differences in metabolic potential. Open Biol 4:140128. doi:10.1098/rsob.140128 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, Formsma K, Gerdes S, Glass E, Kubal M et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75. doi:10.1186/1471-2164-9-75 CrossRefGoogle Scholar
  5. 5.
    Brown PJB, Kysela DT, Buechlein A, Hemmerich C, Brun YV (2011) Genome sequences of eight morphologically diverse Alphaproteobacteria. J Bacteriol 193:4567–4568. doi:10.1128/JB.05453-11 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Cruveiller S, Le Saux J, Vallenet D, Lajus A, Bocs S, Médigue C (2005) MICheck: a web tool for fast check of syntactic annotations of bacterial genomes. Nucleic Acids Res 33:W471–W479. doi:10.1093/nar/gki498 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Darling AE, Mau B, Perna NT (2010) ProgressiveMauve: multiple genome alignment with gene gain, loss, and rearrangement. PLoS One 5:e11147. doi:10.1371/journal.pone.0011147 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Dingwall A, Shapiro L, Ely B (1990) Analysis of bacterial genome organization and replication using pulsed-field gel electrophoresis. Methods 1:160–168CrossRefGoogle Scholar
  9. 9.
    Entcheva-Dimitrov P, Spormann AM (2004) Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus. J Bacteriol 186:8254. doi:10.1128/JB.186.24.8254-8266.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Janakiraman RS, Brun YV (1999) Cell cycle control of a holdfast attachment gene in Caulobacter crescentus. J Bacteriol 181(4):1118PubMedCentralPubMedGoogle Scholar
  11. 11.
    Johnson RC, Ely B (1977) Isolation of spontaneously derived mutants of Caulobacter crescentus. Genetics 86:25–32PubMedCentralPubMedGoogle Scholar
  12. 12.
    Madison KE, Jones-Foster EN, Vogt A, Turner SK, North SH, Nakai H (2014) Stringent response processes suppress DNA damage sensitivity caused by deficiency in full-length translation initiation factor 2 or PriA helicase. Molec Microbiol 92:28–46. doi:10.1111/mmi.12538 CrossRefGoogle Scholar
  13. 13.
    Marks ME, Castro-Rojas CM, Teiling C, Du L, Kapatral V, Walunas TL, Crosson S (2010) The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol 192:3678–3688. doi:10.1128/JB.00255-10 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinformatics 14:193–202. doi:10.1093/bib/bbs012 PubMedCrossRefGoogle Scholar
  15. 15.
    Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis: sequence visualization and annotation. Bioinformatics 16(10):944–945. doi:10.1093/bioinformatics/16.10.944 PubMedCrossRefGoogle Scholar
  16. 16.
    Takahashi T, Kawahara K, Osaka, Isono M Hyogo, Japan (1973) Production of 7-amino-3-methylcephem compounds.US Patent 3,749,641. 31Google Scholar
  17. 17.
    Taylor WC, Ouimet M-C, Wargachuk R, Marczynski GT (2011) The Caulobacter crescentus chromosome replication origin evolved two classes of weak DnaA binding sites. Molec Microbiol 82:312–326. doi:10.1111/j.1365-2958.2011.07785.x CrossRefGoogle Scholar
  18. 18.
    Urakami T, Oyanagi H, Araki H, Suzuki KI, Komagata K (1990) Recharacterization and emended description of the genus Mycoplana and description of two new species, Mycoplana ramosa and Mycoplana segnis. Internatl J System Bacteriol 40:434–442. doi:10.1099/00207713-40-4-434 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sagar Patel
    • 1
  • Brock Fletcher
    • 1
  • Derrick C. Scott
    • 1
  • Bert Ely
    • 1
  1. 1.Department of Biological SciencesUniversity of South CarolinaColumbiaUSA

Personalised recommendations