Skip to main content

Advertisement

Log in

Molecular Analysis of pbp2b in Streptococcus pneumonia Isolated From Clinical and Normal Flora Samples

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Streptococcus pneumoniae is an important bacterial pathogen responsible for respiratory infections, bacteraemia, and meningitis remains an important cause of disease and mortality in infants and younger children around the world, with penicillin being considered the drug of choice for the treatment of infections. However, penicillin-resistant S. pneumonia is now becoming endemic worldwide. In this study, a total of 80 pneumococcal isolates were collected from different clinical sources as well as normal flora. These isolates were subjected to antimicrobial susceptibility testing and MIC determination. The penicillin-binding proteins, pbp2b, were amplified by PCR, and they were sequenced. The genetic relationship of the penicillin-resistant isolates was performed by BOX PCR. Overall, 36 pneumococcal (45 %) isolates were found to be resistant to penicillin with different MICs. The majority of them (80 %) were intermediately resistant with MIC of 0.12–1 µg/ml, whereas 20 % of isolates were penicillin resistant with MICs of >2 µg/ml. The results identified seven groups which were based on the amino acid substitutions of pbp2b. Sequencing analysis revealed that the most prevalent mutation was the substitution of Adenine for Thymine at the position 445 which is next to the second PBP2b-conserved motif (SSN). This study indicates that resistance to penicillin appears to be dependent on specific mutations in pbp2b, and the substitution in S620 → T near to the third PBP2b-conserved motif appears to be important in developing highly antibiotic-resistant isolates. Moreover, there was a positive correlation between the mutations in pbp2b gene and MIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nichol KA, Zhanel GG, Hoban DJ (2002) Penicillin-binding protein 1A, 2B, and 2X alterations in Canadian isolates of penicillin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 46:3261–3264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Song JH, Jung SI, Ko KS, Kim NY, Son JS, Chang HH et al (2004) High prevalence of antimicrobial resistance among clinical Streptococcus pneumoniae isolates in Asia (an ANSORP study). Antimicrob Agents Chemother 48:2101–2107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bennett D, Lennon B, Humphreys H, Cafferkey M (2003) Penicillin susceptibility and epidemiological typing of invasive pneumococcal isolates in the Republic of Ireland. J Clin Microbiol 41:3641364–3641368

    Article  Google Scholar 

  4. Sanbongi Y, Ida T, Ishikawa M, Osaki Y, Kataoka H, Suzuki T et al (2004) Complete sequences of six penicillin-binding protein genes from 40 Streptococcus pneumoniae clinical isolates collected in Japan. Antimicrob Agents Chemother 48:2244–2250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cafini F, del Campo R, Alou L, Sevillano D, Morosini MI, Baquero F et al (2006) Alterations of the penicillin-binding proteins and murM alleles of clinical Streptococcus pneumoniae isolates with high-level resistance to amoxicillin in Spain. J Antimicrob Chemother 57:224–229

    Article  CAS  PubMed  Google Scholar 

  6. Charpentier E, Tuomanen E (2000) Mechanisms of antibiotic resistance and tolerance in Streptococcus pneumoniae. Microbes Infect 2:1855–1864

    Article  CAS  PubMed  Google Scholar 

  7. Fani F, Brotherton MC, Leprohon P, Ouellette M (2013) Genomic analysis and reconstruction of cefotaxime resistance in Streptococcus pneumoniae. J Antimicrob Chemother 68:1718–1727

    Article  CAS  PubMed  Google Scholar 

  8. Hakenbeck R, Konig A, Kern I, van der Linden M, Keck W, Billot-Klein D et al (1998) Acquisition of five high-Mr penicillin-binding protein variants during transfer of high-level beta-lactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J Bacteriol 180:1831–1840

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Maurer P, Koch B, Zerfass I, Krauss J, van der Linden M, Frere JM et al (2008) Penicillin-binding protein 2x of Streptococcus pneumoniae: three new mutational pathways for remodelling an essential enzyme into a resistance determinant. J Mol Biol 376:1403–1416

    Article  CAS  PubMed  Google Scholar 

  10. Nagai K, Davies TA, Jacobs MR, Appelbaum PC (2002) Effects of amino acid alterations in penicillin-binding proteins (PBPs) 1a, 2b, and 2x on PBP affinities of penicillin, ampicillin, amoxicillin, cefditoren, cefuroxime, cefprozil, and cefaclor in 18 clinical isolates of penicillin-susceptible, -intermediate, and -resistant pneumococci. Antimicrob Agents Chemother 46:1273–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Contreras-Martel C, Dahout-Gonzalez C, Martins Ados S, Kotnik M, Dessen A (2009) PBP active site flexibility as the key mechanism for beta-lactam resistance in pneumococci. J Mol Biol 387:899–909

    Article  CAS  PubMed  Google Scholar 

  12. Kosowska-Shick K, McGhee P, Appelbaum PC (2009) Binding of faropenem and other beta-lactam agents to penicillin-binding proteins of pneumococci with various beta-lactam susceptibilities. Antimicrob Agents Chemother 53:2176–2180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Stralin K, Korsgaard J, Olcen P (2006) Evaluation of a multiplex PCR for bacterial pathogens applied to bronchoalveolar lavage. Eur Respir J 28:568–575

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki N, Yuyama M, Maeda S, Ogawa H, Mashiko K, Kiyoura Y (2006) Genotypic identification of presumptive Streptococcus pneumoniae by PCR using four genes highly specific for S. pneumoniae. J Med Microbiol 55:709–714

    Article  CAS  PubMed  Google Scholar 

  15. Clinical and Laboratory Standards Institute (CLSI) (2010) Performance standards for antimicrobial susceptibility testing; 20th informational supplement. CLSI document M100-S20, vol 30. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  16. du Plessis M, Bingen E, Klugman KP (2002) Analysis of penicillin-binding protein genes of clinical isolates of Streptococcus pneumoniae with reduced susceptibility to amoxicillin. Antimicrob Agents Chemother 46:2349–2357

    Article  PubMed Central  PubMed  Google Scholar 

  17. Smith AM, Klugman KP (2001) Alterations in MurM, a cell wall muropeptide branching enzyme, increase high-level penicillin and cephalosporin resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 45:2393–2396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Payne DB, Sun A, Butler JC, Singh SP, Hollingshead SK, Briles DE (2005) PspA family typing and PCR-based DNA fingerprinting with BOX A1R primer of pneumococci from the blood of patients in the USA with and without sickle cell disease. Epidemiol Infect 133:173–178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Koeuth T, Versalovic J, Lupski JR (1995) Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 5:408–418

    Article  CAS  PubMed  Google Scholar 

  20. Albarracin Orio AG, Pinas GE, Cortes PR, Cian MB, Echenique J (2011) Compensatory evolution of pbp mutations restores the fitness cost imposed by beta-lactam resistance in Streptococcus pneumoniae. PLoS Pathog 7:e1002000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Zhou L, Yu SJ, Gao W, Yao KH, Shen AD et al (2011) Serotype distribution and antibiotic resistance of 140 pneumococcal isolates from pediatric patients with upper respiratory infections in Beijing. Vaccine 29:7704–7710

    Article  CAS  PubMed  Google Scholar 

  22. Kanavaki S, Mantadakis E, Karabela S et al (2005) Antimicrobial resistance of Streptococcus pneumoniae isolates in Athens, Greece. Eur J Clin Microbiol Infect Dis 24:693–696

    Article  CAS  PubMed  Google Scholar 

  23. Ding JJ, Su X, Guo FM, Shi Y, Shao HF, Meng XZ (2009) Comparison of three different PCR-based methods to predict the penicillin nonsusceptible Streptococcus pneumoniae isolates from China. Lett Appl Microbiol 48:105–111

  24. Granger D, Boily-Larouche G, Turgeon P, Weiss K, Roger M (2005) Genetic analysis of pbp2x in clinical Streptococcus pneumoniae isolates in Quebec, Canada. J Antimicrob Chemother 55:832–839

    Article  CAS  PubMed  Google Scholar 

  25. Reichmann P, Konig A, Linares J, Alcaide F, Tenover FC, McDougal L et al (1997) A global gene pool for high-level cephalosporin resistance in commensal Streptococcus species and Streptococcus pneumoniae. J Infect Dis 176:1001–1012

    Article  CAS  PubMed  Google Scholar 

  26. Smith AM, Klugman KP (1995) Alterations in penicillin-binding protein 2B from penicillin-resistant wild-type strains of Streptococcus pneumoniae. Antimicrob Agents Chemother 39:859–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Pagliero E, Chesnel L, Hopkins J, Croize J, Dideberg O, Vernet T et al (2004) Biochemical characterization of Streptococcus pneumoniae penicillin-binding protein 2b and its implication in beta-lactam resistance. Antimicrob Agents Chemother 48:1848–1855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pinar A, Koseoglu O, Yenisehirli G, Sener B (2004) Molecular epidemiology of penicillin-resistant Streptococcus pneumoniae in a university hospital, Ankara, Turkey. Clin Microbiol Infect 10:718–723

    Article  CAS  PubMed  Google Scholar 

  29. Nichol KA, Zhanel GG, Hoban DJ (2003) Molecular epidemiology of penicillin-resistant and ciprofloxacin-resistant Streptococcus pneumoniae in Canada. Antimicrob Agents Chemother 47:804–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The work was financially supported by Iran University of Medical Sciences with Grant number 20218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Talebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, J., Ahamadi, A., Douraghi, M. et al. Molecular Analysis of pbp2b in Streptococcus pneumonia Isolated From Clinical and Normal Flora Samples. Curr Microbiol 70, 206–211 (2015). https://doi.org/10.1007/s00284-014-0704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0704-7

Keywords

Navigation