Advertisement

Current Microbiology

, Volume 70, Issue 2, pp 219–227 | Cite as

Flagellar-Dependent Motility in Mesorhizobium tianshanense is Involved in the Early Stage of Plant Host Interaction: Study of an flgE Mutant

  • Huiming ZhengEmail author
  • Yiling Mao
  • Jiao Teng
  • Qingcheng Zhu
  • Jun Ling
  • Zengtao ZhongEmail author
Article

Abstract

Bacterial motility is most likely a critical factor for rhizobium to chemotactically colonize on the root surface prior to infecting leguminous plant hosts. Several studies of the rhizobium flagellar filament have been reported, but little is known about the rhizobium flagellum hook. To investigate the roles of the hook protein in flagellum synthesis in Mesorhizobium tianshanense, the hook protein-encoding gene flgE of M. tianshanense was amplified by PCR and sequenced. Comparison of the deduced amino acid sequences revealed pronounced similarities in Domain 1 and lower similarities in Domain 2, which are supposed to be related to hook structure assembly and antigenic diversity, respectively. The level of transcription of flgE increased along with the cell growth and reached its maximum at the middle log phase. Disruption of the flgE gene caused a flagellar-less phenotype, thereby causing complete loss of swimming ability, modified nutrient-related swarming ability and biofilm formation. Moreover, the absence of flagellar caused decreased bacterial attachment on the root hair, suggesting that flagellar is involved in the early stage of symbiosis process.

Keywords

Rhizobium Flagellar Filament Flagellum Synthesis lacZ Transcriptional Fusion Hook Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Dr. Jun Zhu for helpful discussion, and Dr. Yunduan Wang for the gene sequence determination. This study was supported by a 973 project (CB126502, to J.Z.), the Ph.D. programs foundation of the Ministry of Education (MOE) (20120097110016, to J.Z.), and an NSFC award (31170077, to Z.Z).

Supplementary material

284_2014_701_MOESM1_ESM.docx (754 kb)
Supplementary material 1 (DOCX 753 kb)

References

  1. 1.
    Ames P, Bergman K (1981) Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J Bacteriol 148(2):728–729PubMedCentralPubMedGoogle Scholar
  2. 2.
    Ballado T et al (2001) The hook gene (flgE) is expressed from the flgBCDEF operon in Rhodobacter sphaeroides: Study of an flgE mutant. J Bacteriol 183(5):1680–1687PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84(1):188–198PubMedCrossRefGoogle Scholar
  4. 4.
    Caetano-Anollés G, Wall LG, De Micheli AT, Macchi EM, Bauer WD, Favelukes G (1988) Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol 86(4):1228–1235PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Chen W, Wang E, Wang S, Li Y, Chen X, Li Y (1995) Characteristics of Rhizobium tianshanense sp nov, a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45(1):153–159PubMedCrossRefGoogle Scholar
  6. 6.
    Cooper JE (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv Bot Res 41:1–62CrossRefGoogle Scholar
  7. 7.
    Covelli JM, Althabegoiti MJ, Lo´pez MF, Lodeiro AR (2013) Swarming motility in Bradyrhizobium japonicum. Res Microbiol 164:136–144PubMedCrossRefGoogle Scholar
  8. 8.
    Eggenhofer E, Rachel R, Haslbeck M, Scharf B (2006) MotD of Sinorhizobium meliloti and related α-proteobacteria is the flagellar-hook-length regulator and therefore reassigned as FliK. J Bacteriol 188(6):2144–2153PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56(2):195–206PubMedCrossRefGoogle Scholar
  10. 10.
    Glenn-Calvo E, Bär W, Frosch M (1994) Isolation and characterization of the flagellar hook of Campylobacter jejuni. FEMS Microbiol Lett 123(3):209–304CrossRefGoogle Scholar
  11. 11.
    Harshey RM (2003) Bacterial motility on a surface : many ways to a common goal. Annu Rev Microbiol 57(1):249–273PubMedCrossRefGoogle Scholar
  12. 12.
    Hellweg C, Pühler A, Weidner S (2009) The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiol 9(1):37PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Henrichsen J (1972) Bacterial surface translocation : a survey and a classification. Bacteriol Rev 36(4):478PubMedCentralPubMedGoogle Scholar
  14. 14.
    Hirano T, Shibata S, Ohnishi K, Tani T, Aizawa SI (2005) N-terminal signal region of FliK is dispensable for length control of the flagellar hook. Mol Microbiol 56(2):346–360PubMedCrossRefGoogle Scholar
  15. 15.
    Kinsella N, Guerry P, Cooney J (1997) The flgE gene of Campylobacter coli is under the control of the alternative sigma factor sigma54. J Bacteriol 179(15):4647–4653PubMedCentralPubMedGoogle Scholar
  16. 16.
    Lüneberg E, Glenn-Calvo E, Hartmann M, Bär W, Frosch M (1998) The central, surface-exposed region of the flagellar hook protein FlgE of Campylobacter jejuni Shows hypervariability among strains. J Bacteriol 180(14):3711–3714PubMedCentralPubMedGoogle Scholar
  17. 17.
    Le MT, Porcelli I, Weight CM, Gaskin DJ, Carding SR, Vliet AH (2012) Acid-shock of Campylobacter jejuni induces flagellar gene expression and host cell invasion. Eur J Microbiol Immunol 2(1):12–19CrossRefGoogle Scholar
  18. 18.
    Li H, Ruby J, Charon N, Kuramitsu H (1996) Gene inactivation in the oral spirochete Treponema denticola: construction of an flgE mutant. J Bacteriol 178(12):3664–3667PubMedCentralPubMedGoogle Scholar
  19. 19.
    Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57(1):77–100PubMedCrossRefGoogle Scholar
  20. 20.
    Malek W (1992) The role of motility in the efficiency of nodulation by Rhizobium meliloti. Arch Microbiol 158(1):26–28CrossRefGoogle Scholar
  21. 21.
    Mellor HY, Glenn AR, Arwas R, Dilworth MJ (1987) Symbiotic and competitive properties of motility mutants of Rhizobium trifolii TA1. Arch Microbiol 148(1):34–39CrossRefGoogle Scholar
  22. 22.
    Merritt JH, Brothers KM, Kuchma SL, O’toole GA (2007) SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 189(22):8154–8164PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  24. 24.
    Miller LD, Yost CK, Hynes MF, Alexandre G (2007) The major chemotaxis gene cluster of Rhizobium leguminosarum bv viciae is essential for competitive nodulation. Mol Microbiol 63(2):348–362PubMedCrossRefGoogle Scholar
  25. 25.
    Murray TS, Kazmierczak BI (2008) Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol 190(8):2700–2708PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Platzer J, Sterr W, Hausmann M, Schmitt R (1997) Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti. J Bacteriol 179(20):6391–6399PubMedCentralPubMedGoogle Scholar
  27. 27.
    Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W (2006) Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol 157(9):867–875PubMedCrossRefGoogle Scholar
  28. 28.
    Sal MS, Li C, Motalab M, Shibata S, Aizawa SI, Charon NW (2008) Borrelia burgdorferi uniquely regulates its motility genes and has an intricate flagellar hook-basal body structure. J Bacteriol 190(6):1912–1921PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Samatey FA, Matsunami H, Imada K, Nagashima S, Shaikh TR, Thomas DR, Chen JZ, DeRosier DJ, Kitao A, Namba K (2004) Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431(7012):1062–1068PubMedCrossRefGoogle Scholar
  30. 30.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  31. 31.
    Santaella C, Schue M, Berge O, Heulin T, Achouak W (2008) The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ Microbiol 10(8):2150–2163PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Sauer K, Cullen M, Rickard A, Zeef L, Davies D, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186(21):7312–7326PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Scharf B, Schuster-Wolff-Bühring H, Rachel R, Schmitt R (2001) Mutational analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti flagellin genes: importance of flagellin A for flagellar filament structure and transcriptional regulation. J Bacteriol 183(18):5334–5342PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Skorupska A, Deryło M, Lorkiewicz Z (1989) Siderophore production and utilization by Rhizobium trifolii. Biol Metals 2(1):45–49CrossRefGoogle Scholar
  35. 35.
    Smit G, Logman T, Boerrigter M, Kijne J, Lugtenberg B (1989) Purification and partial characterization of the Rhizobium leguminosarum biovar viciae Ca2+-dependent adhesin, which mediates the first step in attachment of cells of the family Rhizobiaceae to plant root hair tips. J Bacteriol 171(7):4054–4062PubMedCentralPubMedGoogle Scholar
  36. 36.
    Soby S, Bergman K (1983) Motility and chemotaxis of Rhizobium meliloti in soil. Appl Environ Microbiol 46(5):995–998PubMedCentralPubMedGoogle Scholar
  37. 37.
    Sourjik V, Muschler P, Scharf B, Schmitt R (2000) VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J Bacteriol 182(3):782–788PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Tambalo DD, Bustard DE, Del Bel KL, Koval SF, Khan MF, Hynes MF (2010) Characterization and functional analysis of seven flagellin genes in Rhizobium leguminosarum bv. viciae. characterization of R. leguminosarum flagellins. BMC Microbiol 10(1):219PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Tambalo DD, Del Bel KL, Bustard DE, Greenwood PR, Steedman AE, Hynes MF (2010) Regulation of flagellar, motility and chemotaxis genes in Rhizobium leguminosarum by the VisN/R-Rem cascade. Microbiology 156(6):1673–1685PubMedCrossRefGoogle Scholar
  40. 40.
    Thomason MK, Fontaine F, De Lay N, Storz G (2012) A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol Microbiol 84(1):17–35PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Van Houdt R, Michiels CW (2005) Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol 156(5):626–633PubMedCrossRefGoogle Scholar
  42. 42.
    Vatanyoopaisarn S, Nazli A, Dodd CE, Rees CE, Waites WM (2000) Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel. Appl Environ Microbiol 66(2):860–863PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Wang P, Zhong Z, Zhou J, Cai T, Zhu J (2008) Exopolysaccharide biosynthesis is important for Mesorhizobium tianshanense: plant host interaction. Arch Microbiol 189(5):525–530PubMedCrossRefGoogle Scholar
  45. 45.
    Zheng H, Zhong Z, Lai X, Chen WX, Li S, Zhu J (2006) A LuxR/LuxI-type quorum-sensing system in a plant bacterium, Mesorhizobium tianshanense, controls symbiotic nodulation. J Bacteriol 188(5):1943–1949PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MicrobiologyNanjing Agricultural UniversityNanjingChina

Personalised recommendations