Spongiivirga citrea gen. nov., sp. nov., a New Marine Bacterium of the Family Flavobacteriaceae Isolated from a Marine Sponge

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A Gram-negative, strictly aerobic, lemon-yellow pigmented, non-motile, rod-shaped strain designated A7G-39T was isolated from a yellow coloured marine sponge (Tethya sp.). Phylogenetic analyses based on the 16S rRNA gene sequence indicated that the new strain represented a member of the family Flavobacteriaceae of the phylum Bacteroidetes and that it showed highest sequence similarity (94.1 %) to Algibacter wandonensis WS-MY22T. The strain could be differentiated phenotypically from recognised members of the family Flavobacteriaceae. The major fatty acids of strain A7G-39T were identified as iso-C15:0 3-OH and summed feature 1 (iso-C15:1 H and/or C13:0 3-OH) as defined by the MIDI system. The DNA G+C content was determined to be 32.6 mol%, the major respiratory quinone was identified as menaquinone 7 (MK-7) and a polar lipid profile was present consisting of phosphatidylethanolamine, an unidentified aminolipid and an unidentified lipid. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel genus for which the name Spongiivirga citrea gen. nov., sp. nov. is proposed. The type strain of S. citrea is A7G-39T (=KCTC 32990T = NBRC 110022T).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Atlas RM (2010) Handbook of microbiological media. 4th edn. CRC Press, Boca Raton, p 1009

  2. 2.

    Bernardet JF, Nakagawa Y (2003) An introduction to the family Flavobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, an evolving electronic resource for the microbiological community, release 3.15. Springer, New York. http://link.springer-ny.com/link/service/books/10125/

  3. 3.

    Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Bowman JP, Nichols DS (2005) Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 55:1471–1486

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Bowman JP, McCammon SA, Brown JL, Nichols PD, McMeekin TA (1997) Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 47:670–677

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Brettar I, Christen R, Höfle MG (2004) Aquiflexum balticum gen. nov., sp. nov., a novel marine bacterium of the CytophagaFlavobacteriumBacteroides group isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol 54:2335–2341

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Choi JH, Im WT, Liu QM, Yoo JS, Shin JH, Rhee SK, Roh DH (2007) Planococcus donghaensis sp. nov., a starch-degrading bacterium isolated from the East Sea, South Korea. Int J Syst Evol Microbiol 57:2645–2650

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Collins MD, Jones D (1981) A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51:129–134

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Collins CH, Lyne PM (1984) Microbiological methods, 5th edn. Butterworth, London

    Google Scholar 

  10. 10.

    Cottrell MT, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. 11.

    Dittmer JC, Lester RL (1964) A simple, specific spray for the detection of phospholipids on thin-layer chromoatograms. J Lipid Res 15:126–127

    Google Scholar 

  12. 12.

    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  13. 13.

    Fitch WM (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  14. 14.

    Garrity GM, Holt JG (2001) The road map to the manual. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 119–166

    Google Scholar 

  15. 15.

    Hansen GH, Sørheim R (1991) Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241

    Article  Google Scholar 

  16. 16.

    Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  17. 17.

    Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    CAS  PubMed  Google Scholar 

  18. 18.

    Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    CAS  Article  Google Scholar 

  19. 19.

    Kwon KK, Lee SJ, Park JH, Ahn TY, Lee HK (2006) Psychroserpens mesophilus sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae isolated from a young biofilm. Int J Syst Evol Microbiol 56:1055–1058

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Lee SD (2007) Tamlana crocina gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae, isolated from beach sediment in Korea. Int J Syst Evol Microbiol 57:764–769

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Ludwig W, Klenk HP (2001) Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 49–66

    Google Scholar 

  22. 22.

    Madsen L, Møller JD, Dalsgaard I (2005) Flavobacterium psychrophilum in rainbow trout, Oncorhynchus mykiss (Walbaum), hatcheries: studies on broodstock, eggs, fry and environment. J Fish Dis 28:39–47

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Malik YS, Olsen K, Kumar K, Goyal SM (2003) In vitro antibiotic resistance profiles of Ornithobacterium rhinotracheale strains from Minnesota turkeys during 1996–2002. Avian Dis 47:588–593

    PubMed  Article  Google Scholar 

  24. 24.

    Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    CAS  Article  Google Scholar 

  25. 25.

    McCammon SA, Innes BH, Bowman JP, Franzmann PD, Dobson SJ, Holloway PE, Skerratt JH, Nichols PD, Rankin LM (1998) Flavobacterium hibernum sp. nov., a lactose utilizing bacterium from a freshwater Antarctic lake. Int J Syst Bacteriol 48:1405–1412

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    CAS  Article  Google Scholar 

  27. 27.

    Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241

    CAS  Article  Google Scholar 

  28. 28.

    Nedashkovskaya OI, Kim SB, Han SK, Rhee MS, Lysenko AM, Rohde M, Zhukova NV, Frolova GM, Mikhailov VV, Bae KS (2004) Algibacter lectus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from green algae. Int J Syst Evol Microbiol 54:1257–1261

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV, Lee KH, Bae KS (2005) Description of Aquimarina muelleri gen. nov., sp. nov., and proposal of the reclassification of [Cytophaga] latercula Lewin 1969 as Stanierella latercula gen. nov., comb. nov. Int J Syst Evol Microbiol 55:225–229

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Nedashkovskaya OI, Kwon KK, Yang SH, Lee HS, Chung KH, Kim SJ (2008) Lacinutrix algicola sp. nov. and Lacinutrix mariniflava sp. nov., two novel marine alga-associated bacteria and emended description of the genus Lacinutrix. Int J Syst Evol Microbiol 58:2694–2698

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Nematollahi A, Decostere A, Pasmans F, Haesebrouck F (2003) Flavobacterium psychrophilum infections in salmonid fish. J Fish Dis 26:563–574

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    O’Sullivan LA, Rinna J, Humphreys G, Weightman AJ, Fry JC (2006) Culturable phylogenetic diversity of the phylum ‘Bacteroidetes’ from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae: Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov. Int J Syst Evol Microbiol 56:169–180

    PubMed  Article  Google Scholar 

  33. 33.

    Park S, Lee JS, Lee KC, Yoon JH (2013) Algibacter undariae sp. nov., isolated from a brown algae reservoir. Int J Syst Evol Microbiol 63:3704–3709

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Perry LB (1973) Gliding motility in some non-spreading flexibacteria. J Appl Microbiol 36:227–232

    CAS  Google Scholar 

  35. 35.

    Reichenbach H (1989) Genus I. Cytophaga Winogradsky 1929, 577, AL emend. In: Staley JT, Bryant MP, Pfennig N, Holt JC (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 2015–2050

    Google Scholar 

  36. 36.

    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  37. 37.

    Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, Newark

    Google Scholar 

  38. 38.

    Tamura K, Peterson D, Petersen N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  39. 39.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. 40.

    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  41. 41.

    Worliczek HL, Kampfer P, Rosengarten R, Tindall RBJ, Busse HJ (2007) Polar lipid and fatty acid profiles-re-vitalizing old approaches as a modern tool for the classification of mycoplasmas? Syst Appl Microbiol 30:355–370

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Yoon JH, Park S (2013) Algibacter wandonensis sp. nov., isolated from sediment around a brown algae (Undaria pinnatifida) reservoir. Int J Syst Evol Microbiol 63:4771–4776

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from Korea Food Research Institute (Project No. E0131901).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaewoo Yoon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig.

 1A. Thin-layer chromatograms showing the total polar lipid compositions of A7G-39T. Total polar lipids were detected by spraying the plate with molybdophosphoric acid, molybdenun blue, α-naphthol and ninhydrin. PE: Phosphatidylenthanolamine, UAL: unidentified aminolipid, UL: unidentified lipid. Supplementary Fig. 1B. All negative results from the API 20E, API 50CH and API ZYM strips. (PPT 629 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoon, J., Adachi, K., Kasai, H. et al. Spongiivirga citrea gen. nov., sp. nov., a New Marine Bacterium of the Family Flavobacteriaceae Isolated from a Marine Sponge. Curr Microbiol 70, 51–57 (2015). https://doi.org/10.1007/s00284-014-0682-9

Download citation

Keywords

  • Bacteroidetes
  • Marine Agar
  • Unidentified Lipid
  • Unidentified Aminolipids
  • Major Respiratory Quinone