Skip to main content
Log in

Acinetobacter refrigeratorensis sp. nov., Isolated from a Domestic Refrigerator

Current Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 25 November 2014

Abstract

A Gram-negative bacterial strain, designated WB1T, was isolated from a domestic refrigerator in Guangzhou, PR China. Cells of strain WB1T were oxidase-negative, catalase-positive, strictly aerobic, non-spore-forming and non-motile coccobacilli with peritrichous fimbriae-like structures. The strain was able to grow at 10–40 °C with optimum growth at 28–30 °C, pH 6.0–8.0 (optimum, pH 7.0) and 0–6 % NaCl (w/v, optimum, 0.5 %). Phylogenetic analyses based on 16S rRNA gene and rpoB gene sequences revealed that strain WB1T belonged to the genus Acinetobacter and was most closely related to A. indicus DSM 25388T (97.2 % 16S rRNA gene sequence similarity) and A. radioresistens NBRC 102413T (96.8 %). The DNA G + C content of strain WB1T was 46.74 ± 0.04 mol % and the major fatty acids comprised summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C18:1 ω9c, C16:0 and C12:0. The predominant respiratory quinone was identified as Q-9 and the polar lipids as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and an unidentified phospholipid. Phenotypic, phylogenetic and chemotaxonomic data, including low DNA–DNA relatedness with closely related type strains, supported that strain WB1T represents a distinct novel species in the genus Acinetobacter, for which the name Acinetobacter refrigeratorensis sp. nov. was proposed. The type strain is WB1T (=GIMCC 1.663T = CCTCC AB 2014197T = KCTC 42011T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Alvarez-Perez S, Lievens B, Jacquemyn H, Herrera CM (2013) Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., isolated from floral nectar of wild Mediterranean insect-pollinated plants. Int J Syst Evol Microbiol 63(Pt 4):1532–1539. doi:10.1099/ijs.0.043489-0

    Article  PubMed  Google Scholar 

  2. Brisou J, Prevot AR (1954) Etudes de systématique bactérienne. X. Révision des especes réunies dans le genre Achromobacter. Annales de l’Institut Pasteur 86(6):722–728

    CAS  PubMed  Google Scholar 

  3. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Carr EL, Kampfer P, Patel BK, Gurtler V, Seviour RJ (2003) Seven novel species of Acinetobacter isolated from activated sludge. Int J Syst Evol Microbiol 53(Pt 4):953–963

    Article  CAS  PubMed  Google Scholar 

  5. Choi JY, Ko G, Jheong W, Huys G, Seifert H, Dijkshoorn L, Ko KS (2013) Acinetobacter kookii sp. nov., isolated from soil. Int J Syst Evol Microbiol 63(Pt 12):4402–4406. doi:10.1099/ijs.0.047969-0

    Article  CAS  PubMed  Google Scholar 

  6. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    Article  CAS  PubMed  Google Scholar 

  7. Cruze J, Singer J, Finnerty W (1979) Conditions for quantitative transformation in Acinetobacter calcoaceticus. Curr Microbiol 3(3):129–132

    Article  CAS  Google Scholar 

  8. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  9. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  CAS  PubMed  Google Scholar 

  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  11. Hiraishi A (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    Article  CAS  Google Scholar 

  12. Huss VA, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Sys Appl Microbiol 4(2):184–192. doi:10.1016/S0723-2020(83)80048-4

    Article  CAS  Google Scholar 

  13. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  14. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(Pt 3):716–721

    Article  CAS  PubMed  Google Scholar 

  15. La Scola B, Gundi VA, Khamis A, Raoult D (2006) Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol 44(3):827–832. doi:10.1128/JCM.44.3.827-832.2006

    Article  PubMed Central  PubMed  Google Scholar 

  16. Li Y, He W, Wang T, Piao CG, Guo LM, Chang JP, Guo MW, Xie SJ (2014) Acinetobacter qingfengensis sp. nov., isolated from canker bark of Populus × euramericana. Int J Syst Evol Microbiol 64(Pt 3):1043–1050

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Piao CG, Ma YC, He W, Wang HM, Chang JP, Guo LM, Wang XZ, Xie SJ, Guo MW (2013) Acinetobacter puyangensis sp. nov., isolated from the healthy and diseased part of Populus × euramericana canker bark. Int J Syst Evol Microbiol 63(Pt 8):2963–2969

    Article  CAS  PubMed  Google Scholar 

  18. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Sys Bateriol 39(2):159–167

    Article  CAS  Google Scholar 

  19. Moore DD, Dowhan D (1995) Preparation and analysis of DNA. In: Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2–11

    Google Scholar 

  20. Narciso-da-Rocha C, Vaz-Moreira I, Svensson-Stadler L, Moore ER, Manaia CM (2013) Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. Appl Microbiol Biotechnol 97(1):329–340. doi:10.1007/s00253-012-4190-1

    Article  CAS  PubMed  Google Scholar 

  21. Nemec A, Dijkshoorn L, Cleenwerck I, De Baere T, Janssens D, Van Der Reijden TJ, Jezek P, Vaneechoutte M (2003) Acinetobacter parvus sp. nov., a small-colony-forming species isolated from human clinical specimens. Int J Syst Evol Microbiol 53(Pt 5):1563–1567

    Article  CAS  PubMed  Google Scholar 

  22. Nemec A, Krizova L, Maixnerova M, van der Reijden TJ, Deschaght P, Passet V, Vaneechoutte M, Brisse S, Dijkshoorn L (2011) Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol 162(4):393–404. doi:10.1016/j.resmic.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  23. Nemec A, Musilek M, Maixnerova M, De Baere T, van der Reijden TJ, Vaneechoutte M, Dijkshoorn L (2009) Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int J Syst Evol Microbiol 59(Pt 1):118–124. doi:10.1099/ijs.0.001230-0

    Article  CAS  PubMed  Google Scholar 

  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  25. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI, Newark

    Google Scholar 

  26. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

    Google Scholar 

  27. Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Sys Bateriol 44(4):846–849

    Article  CAS  Google Scholar 

  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology. American Society for Microbiology, Washington DC, pp 365, 384–385

  30. Vaz-Moreira I, Novo A, Hantsis-Zacharov E, Lopes AR, Gomila M, Nunes OC, Manaia CM, Halpern M (2011) Acinetobacter rudis sp. nov., isolated from raw milk and raw wastewater. Int J Syst Evol Microbiol 61(Pt 12):2837–2843. doi:10.1099/ijs.0.027045-0

    Article  CAS  PubMed  Google Scholar 

  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  32. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Yang SZ, Feng GD, Yao Q, Wang YH, Yao YX, Zhu HH (2013) Investigation of microbial species in domestic refrigerator. Biotechnol Bull 2:195–200 (In Chinese)

    Google Scholar 

Download references

Acknowledgments

We are grateful to Mrs. Ailing Zhang and Miss Zhiying Zhao in Guangdong Institute of Microbiology for help in the observation of cell morphology. This work was supported by the Natural Science Foundation of China (31170009), the Program of National Infrastructure of Microbial Resources [NIMR (2012)-01-02] and the National High Technology Research and Development Program of China (863 Program) (2014AA021501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghui Zhu.

Additional information

Guangda Feng and Songzhen Yang have contributed equally to this study.

The GenBank/EMBL/DDBJ accession numbers for 16S rRNA gene and rpoB gene sequences of strain WB1T are KF709454 and KJ701022, respectively.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1053 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, G., Yang, S., Wang, Y. et al. Acinetobacter refrigeratorensis sp. nov., Isolated from a Domestic Refrigerator. Curr Microbiol 69, 888–893 (2014). https://doi.org/10.1007/s00284-014-0669-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0669-6

Keywords

Navigation