Skip to main content

Advertisement

Log in

African Origin and Europe-Mediated Global Dispersal of The Cyanobacterium Microcystis aeruginosa

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Microcystis aeruginosa is a bloom-forming cyanobacteria, which currently has a cosmopolitan distribution. Since M. aeruginosa can produce toxic compounds across all continents that it inhabits, it is of major public health relevance to assess its origin and dispersal. Thus, we conducted a worldwide study using 29 isolates representative of all the main continents, and used a concatenated genetic system for phylogenetic analyses consisting of four genetic markers (spanning ca. 3,485 bp). Our results support an early origin of M. aeruginosa in the African continent, with a subsequent dispersal to establish a second genetic pool in the European continent, from where M. aeruginosa then colonized the remaining continental regions. Our findings indicate that the European population has a cosmopolitan distribution, and is genetically closer to populations from Africa and North America. Our study also highlights the utility of using a concatenated dataset for phylogenetic inferences in cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bittencourt-Oliveira MC, Oliveira MC, Bolch CJS (2001) Genetic variability of Brazilian strains of the Microcystis aeruginosa complex (Cyanobacteria/Cyanophyceae) using the phycocyanin intergenic spacer and flanking regions (cpcBA). J Phycol 37:810–818

    Article  CAS  Google Scholar 

  2. Gadagkar SR, Rosenberg MS, Kumar S (2005) Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J Exp Zool B 304B:64–74

    Article  CAS  Google Scholar 

  3. Gaevsky NA, Kolmakov VI, Belykh OI, Tikhonova IV, Joung Y, Ahn TS, Nabatova VA, Gladkikh AS (2011) Ecological development and genetic diversity of Microcystis aeruginosa from artificial reservoir in Russia. J Microbiol 49(5):714–720

    Article  PubMed  Google Scholar 

  4. Haande S, Ballot A, Rohrlack T, Fastner J, Wiedner C, Edvardsen B (2007) Diversity of Microcystis aeruginosa strains (Chroococcales, cyanobacteria) from East-African water bodies. Arch Microbiol 188:15–25

    Article  PubMed  CAS  Google Scholar 

  5. Haande S, Rohrlack T, Ballot A, Røberg K, Skulberg R, Beck M, Wiedner C (2008) Genetic characterization of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Africa and Europe. Harmful Algae 7:692–701

    Article  CAS  Google Scholar 

  6. Ibelings BW, Chorus I (2007) Accumulation of cyanobacterial toxins in freshwater ‘‘seafood’’ and its consequences for public health, a review. Environ Pollut 150:177–192

    Article  PubMed  CAS  Google Scholar 

  7. Iteman I, Rippka R, de Tandeau Marsac N, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275–1286

    PubMed  CAS  Google Scholar 

  8. Janse I, Kardinaal WEA, Meima M, Fastner J, Visser PM, Zwart G (2004) Toxic and nontoxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. Appl Environ Microbiol 70(7):3979–3987

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Komárek J, Komárková J (2002) Review of the European Microcystis-morphospecies (Cyanoprokaryotes) from nature. Czech Phycol Olomouc 2:1–24

    Google Scholar 

  10. Kotai J (1972) Instructions for preparation of modified nutrient solution for algae, vol 5. Norwegian Institute for Water Research, Oslo

    Google Scholar 

  11. Kristiansen J (1996) 16. Dispersal of freshwater algae—a review. Hydrobiologia 336(1–3):151–157

    Article  Google Scholar 

  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace M, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  13. Moreira C, Fathalli A, Vasconcelos V, Antunes A (2011) Genetic diversity and structure of the invasive toxic cyanobacterium Cylindrospermopsis raciborskii. Curr Microbiol 62(5):1590–1595

    Article  PubMed  CAS  Google Scholar 

  14. Neilan BA, Jacobs D, Del Dot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697

    Article  PubMed  CAS  Google Scholar 

  15. Otsuka S, Suda S, Li R, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM (1999) Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172:15–21

    Article  PubMed  CAS  Google Scholar 

  16. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  17. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  18. Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Article  PubMed  CAS  Google Scholar 

  19. Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, Massachusetts

  20. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 40. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  21. Tanabe Y, Kasai F, Watanabe MM (2007) Multilocus sequence typing reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosa. Microbiology 153:3695–3703

    Article  PubMed  CAS  Google Scholar 

  22. van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer A-E, Lacerot G, De Meester L, Vyverman W (2011) Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS One 6(5):e19561. doi:10.1371/journal.pone.0019561

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wu Z, Shi J, Xiao P, Liu Y, Li R (2011) Phylogenetic analysis of two cyanobacterial genera Cylindrospermopsis and Raphidiopsis based on multi-gene sequences. Harmful Algae 10:419–425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Cristiana Moreira was funded by a Ph.D. fellowship (SFRH/BD/47164/2008) from Fundação para a Ciência e a Tecnologia (FCT). Agostinho Antunes was partially supported by the European Regional Development Fund (ERDF) through the COMPETE-Operational Competitiveness Programme and national funds through FCT under the projects PEst-C/MAR/LA0015/2013, PTDC/AAC-AMB/104983/2008 (FCOMP-01-0124-FEDER-008610) and PTDC/AAC-CLI/116122/2009 (FCOMP-01-0124-FEDER-014029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostinho Antunes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, C., Spillane, C., Fathalli, A. et al. African Origin and Europe-Mediated Global Dispersal of The Cyanobacterium Microcystis aeruginosa . Curr Microbiol 69, 628–633 (2014). https://doi.org/10.1007/s00284-014-0628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0628-2

Keywords