Skip to main content
Log in

Integration Host Factor is Required for the Induction of Acid Resistance in Escherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Integration host factor (IHF) is a heterodimeric histone-like DNA-binding protein that participates in many cellular functions. Many systems and global regulators of acid resistance (AR) under strongly acidic conditions have been reported, but the role of IHF has not been examined. In the present study, we report that IHF is necessary for the induction of AR in Escherichia coli. At acidic pH, a ∆ihfA∆ifhB-mutant strain was found to have significantly depressed levels of transcription of the arginine decarboxylase gene (adiA) and of translation of the lysine/cadaverine antiporter gene (cadB), when compared with wild-type strain. Thus, IHF induces the arginine- and lysine-dependent AR. These results indicate that in E. coli, by combined transcriptional and translational controls of gene expression, IHF activates expression of a specific set of genes required for survival at extremely acidic pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Becker NA, Kahn JD, Maher LJ 3rd (2007) Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli. Nucleic Acids Res 35:3988–4000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bi H, Sun L, Fukamachi T, Saito H, Kobayashi H (2009) HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli. Curr Microbiol 58:443–448

    Article  CAS  PubMed  Google Scholar 

  3. Brescia CC, Kaw MK, Sledjeski DD (2004) The DNA binding protein H-NS binds to and alters the stability of RNA in vitro and in vivo. J Mol Biol 339:505–514

    Article  CAS  PubMed  Google Scholar 

  4. Cagle CA, Shearer JE, Summers AO (2011) Regulation of the integrase and cassette promoters of the class 1 integron by nucleoid-associated proteins. Microbiology 157:2841–2853

    Article  CAS  PubMed  Google Scholar 

  5. Castanie-Cornet MP, Cam K, Bastiat B, Cros A, Bordes P, Gutierrez C (2010) Acid stress response in Escherichia coli: mechanism of regulation of gadA transcription by RcsB and GadE. Nucleic Acids Res 38:3546–3554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Castanie-Cornet MP, Treffandier H, Francez-Charlot A, Gutierrez C, Cam K (2007) The glutamate-dependent acid resistance system in Escherichia coli: essential and dual role of the His-Asp phosphorelay RcsCDB/AF. Microbiology 153:238–246

    Article  CAS  PubMed  Google Scholar 

  8. Devroede N, Huysveld N, Charlier D (2006) Mutational analysis of intervening sequences connecting the binding sites for integration host factor, PepA, PurR, and RNA polymerase in the control region of the Escherichia coli carAB operon, encoding carbamoylphosphate synthase. J Bacteriol 188:3236–3245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Diez-Gonzalez F, Karaibrahimoglu Y (2004) Comparison of the glutamate-, arginine- and lysine-dependent acid resistance systems in Escherichia coli O157:H7. J Appl Microbiol 96:1237–1244

    Article  CAS  PubMed  Google Scholar 

  10. Drlica K, Rouviere-Yaniv J (1987) Histonelike proteins of bacteria. Microbiol Rev 51:301–319

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907

    Article  CAS  PubMed  Google Scholar 

  12. Giangrossi M, Zattoni S, Tramonti A, De Biase D, Falconi M (2005) Antagonistic role of H-NS and GadX in the regulation of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli. J Biol Chem 280:21498–21505

    Article  CAS  PubMed  Google Scholar 

  13. Gong S, Richard H, Foster JW (2003) YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 185:4402–4409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hansen AM, Qiu Y, Yeh N, Blattner FR, Durfee T, Jin DJ (2005) SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli. Mol Microbiol 56:719–734

    Article  CAS  PubMed  Google Scholar 

  15. Hersh BM, Farooq FT, Barstad DN, Blankenhorn DL, Slonczewski JL (1996) A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol 178:3978–3981

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Jensen KF (1993) The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Jeong JH, Kim HJ, Kim KH, Shin M, Hong Y, Rhee JH, Schneider TD, Choy HE (2012) An unusual feature associated with LEE1 P1 promoters in enteropathogenic Escherichia coli (EPEC). Mol Microbiol 83:612–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kanjee U, Houry WA (2013) Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol 67:65–81

    Article  CAS  PubMed  Google Scholar 

  19. Krin E, Danchin A, Soutourina O (2010) Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli. BMC Microbiol 10:273

    Article  PubMed Central  PubMed  Google Scholar 

  20. Krin E, Danchin A, Soutourina O (2010) RcsB plays a central role in H-NS-dependent regulation of motility and acid stress resistance in Escherichia coli. Res Microbiol 161:363–371

    Article  CAS  PubMed  Google Scholar 

  21. Lin J, Smith MP, Chapin KC, Baik HS, Bennett GN, Foster JW (1996) Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 62:3094–3100

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  23. Ma Z, Gong S, Richard H, Tucker DL, Conway T, Foster JW (2003) GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 49:1309–1320

    Article  CAS  PubMed  Google Scholar 

  24. Mates AK, Sayed AK, Foster JW (2007) Products of the Escherichia coli acid fitness island attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid resistance. J Bacteriol 189:2759–2768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Meng SY, Bennett GN (1992) Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 174:2659–2669

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Miller HI, Friedman DI (1980) An E. coli gene product required for lambda site-specific recombination. Cell 20:711–719

    Article  CAS  PubMed  Google Scholar 

  27. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  28. Mitra A, Fay PA, Morgan JK, Vendura KW, Versaggi SL, Riordan JT (2012) Sigma factor N, liaison to an ntrC and rpoS dependent regulatory pathway controlling acid resistance and the LEE in enterohemorrhagic Escherichia coli. PLoS ONE 7:e46288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Nash HA, Robertson CA, Flamm E, Weisberg RA, Miller HI (1987) Overproduction of Escherichia coli integration host factor, a protein with nonidentical subunits. J Bacteriol 169:4124–4127

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Neely MN, Olson ER (1996) Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine. J Bacteriol 178:5522–5528

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Rice PA, Yang S, Mizuuchi K, Nash HA (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87:1295–1306

    Article  CAS  PubMed  Google Scholar 

  32. Roland KL, Liu CG, Turnbough CL Jr (1988) Role of the ribosome in suppressing transcriptional termination at the pyrBI attenuator of Escherichia coli K-12. Proc Natl Acad Sci U S A 85:7149–7153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Rowbury RJ (1997) Regulatory components, including integration host factor, CysB and H-NS, that influence pH responses in Escherichia coli. Lett Appl Microbiol 24:319–328

    Article  CAS  PubMed  Google Scholar 

  34. Ryan VT, Grimwade JE, Camara JE, Crooke E, Leonard AC (2004) Escherichia coli prereplication complex assembly is regulated by dynamic interplay among Fis, IHF and DnaA. Mol Microbiol 51:1347–1359

    Article  CAS  PubMed  Google Scholar 

  35. Sambrook J, Russell DW (2006) The condensed protocols from Molecular cloning : a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  36. Seputiene V, Daugelavicius A, Suziedelis K, Suziedeliene E (2006) Acid response of exponentially growing Escherichia coli K-12. Microbiol Res 161:65–74

    Article  CAS  PubMed  Google Scholar 

  37. Silhavy TJ, Berman ML, Enquist LW, Cold Spring Harbor Laboratory (1984) Experiments with gene fusions. Cold Spring Harbor, Cold Spring Harbor Laboratory

    Google Scholar 

  38. Simons RW, Houman F, Kleckner N (1987) Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53:85–96

    Article  CAS  PubMed  Google Scholar 

  39. Sohanpal BK, Friar S, Roobol J, Plumbridge JA, Blomfield IC (2007) Multiple co-regulatory elements and IHF are necessary for the control of fimB expression in response to sialic acid and N-acetylglucosamine in Escherichia coli K-12. Mol Microbiol 63:1223–1236

    Article  CAS  PubMed  Google Scholar 

  40. Soksawatmaekhin W, Uemura T, Fukiwake N, Kashiwagi K, Igarashi K (2006) Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. J Biol Chem 281:29213–29220

    Article  CAS  PubMed  Google Scholar 

  41. Stincone A, Daudi N, Rahman AS, Antczak P, Henderson I, Cole J, Johnson MD, Lund P, Falciani F (2011) A systems biology approach sheds new light on Escherichia coli acid resistance. Nucleic Acids Res 39:7512–7528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sugimura S, Crothers DM (2006) Stepwise binding and bending of DNA by Escherichia coli integration host factor. Proc Natl Acad Sci USA 103:18510–18514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Vazquez-Juarez RC, Kuriakose JA, Rasko DA, Ritchie JM, Kendall MM, Slater TM, Sinha M, Luxon BA, Popov VL, Waldor MK, Sperandio V, Torres AG (2008) CadA negatively regulates Escherichia coli O157:H7 adherence and intestinal colonization. Infect Immun 76:5072–5081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Watson N, Dunyak DS, Rosey EL, Slonczewski JL, Olson ER (1992) Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J Bacteriol 174:530–540

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Yasuzawa K, Hayashi N, Goshima N, Kohno K, Imamoto F, Kano Y (1992) Histone-like proteins are required for cell growth and constraint of supercoils in DNA. Gene 122:9–15

    Article  CAS  PubMed  Google Scholar 

  46. Yona-Nadler C, Umanski T, Aizawa S, Friedberg D, Rosenshine I (2003) Integration host factor (IHF) mediates repression of flagella in enteropathogenic and enterohaemorrhagic Escherichia coli. Microbiology 149:877–884

    Article  CAS  PubMed  Google Scholar 

  47. Zhao B, Houry WA (2010) Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Biochem Cell Biol 88:301–314

    Article  CAS  PubMed  Google Scholar 

  48. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Y. Kano and R. W. Simons for providing bacterial strains, and Dr. John Cronan for his valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkai Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, H., Zhang, C. Integration Host Factor is Required for the Induction of Acid Resistance in Escherichia coli . Curr Microbiol 69, 218–224 (2014). https://doi.org/10.1007/s00284-014-0595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0595-7

Keywords

Navigation