Skip to main content

Advertisement

Log in

Phenotypic Characterization of Salmonella RyhB-1 Mutations that Modulate Target Regulation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Recently, we reported the global regulatory roles of the two small RNAs in Salmonella typhimurium, ryhB-1 and ryhB-2. However, the genetic basis of the sRNA-target interactions remains unknown. To identify the nucleotides of RyhB-1 that are functionally important for its regulatory actions, we introduced random single-point mutations into ryhB-1 gene on the chromosome of Salmonella typhimurium carrying a sodBlacZ translational fusion by an error-prone PCR method. We reasoned that mutants expressing variant RyhB-1 with weakened interaction with sodB transcript would produce a higher level of SodB when compared to wild type, leading to darker blue colonies on X-gal agar plates. Five mutants displaying a significant increase in β-galactosidase activity under the condition inducing RyhB-1 expression were isolated. Quantitative real-time PCR analysis showed that the expression levels of eight target mRNAs in these five mutants were significantly changed when compared to the parent strain. Interestingly, two mutations affected growth and cell survival under H2O2-stressed conditions. The results suggest that there are strong selective constraints against mutational changes in ryhB-1 gene sequence, leading to high levels of nucleotide conservation in ryhB-1 gene sequences among the genus of Salmonella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bossi L, Figueroa-Bossi N (2007) A small RNA downregulates LamB maltoporin in Salmonella. Mol Microbiol 65(3):799–810. doi:10.1111/j.1365-2958.2007.05829.x

    Article  CAS  PubMed  Google Scholar 

  2. Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2(1):28–33

    Article  CAS  PubMed  Google Scholar 

  3. Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158(1):9–14

    Article  CAS  PubMed  Google Scholar 

  4. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645. doi:10.1073/pnas.120163297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ellermeier JR, Slauch JM (2008) Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. J Bacteriol 190(2):476–486. doi:10.1128/JB.00926-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Figueroa-Bossi N, Lemire S, Maloriol D, Balbontin R, Casadesus J, Bossi L (2006) Loss of Hfq activates the sigmaE-dependent envelope stress response in Salmonella enterica. Mol Microbiol 62(3):838–852. doi:10.1111/j.1365-2958.2006.05413.x

    Article  CAS  PubMed  Google Scholar 

  7. Geissmann TA, Touati D (2004) Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J 23(2):396–405. doi:10.1038/sj.emboj.7600058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hao Y, Zhang ZJ, Erickson DW, Huang M, Huang Y, Li J, Hwa T, Shi H (2011) Quantifying the sequence–function relation in gene silencing by bacterial small RNAs. Proc Natl Acad Sci USA 108(30):12473–12478. doi:10.1073/pnas.1100432108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Horton RM, Cai ZL, Ho SN, Pease LR (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8(5):528–535

    CAS  PubMed  Google Scholar 

  10. Jacques JF, Jang S, Prevost K, Desnoyers G, Desmarais M, Imlay J, Masse E (2006) RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. Mol Microbiol 62(4):1181–1190. doi:10.1111/j.1365-2958.2006.05439.x

    Article  CAS  PubMed  Google Scholar 

  11. Kawamoto H, Koide Y, Morita T, Aiba H (2006) Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol Microbiol 61(4):1013–1022. doi:10.1111/j.1365-2958.2006.05288.x

    Article  CAS  PubMed  Google Scholar 

  12. Kim JN, Kwon YM (2013) Genetic and phenotypic characterization of the RyhB regulon in Salmonella Typhimurium. Microbiol Res 168(1):41–49. doi:10.1016/j.micres.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  13. Kim JN, Kwon YM (2013) Identification of target transcripts regulated by small RNA RyhB homologs in Salmonella: RyhB-2 regulates motility phenotype. Microbiol Res 168(10):621–629. doi:10.1016/j.micres.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  14. Maloy SR, Stewart VJ, Talyor RK (1996) Genetic analysis of pathogenic bacteria. Cold Spring Harbor Laboratory, Plainview

    Google Scholar 

  15. Masse E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17(19):2374–2383. doi:10.1101/gad.1127103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Masse E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99(7):4620–4625. doi:10.1073/pnas.032066599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Masse E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187(20):6962–6971. doi:10.1128/JB.187.20.6962-6971.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Morita T, Maki K, Aiba H (2005) RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19(18):2176–2186. doi:10.1101/gad.1330405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Oglesby AG, Murphy ER, Iyer VR, Payne SM (2005) Fur regulates acid resistance in Shigella flexneri via RyhB and ydeP. Mol Microbiol 58(5):1354–1367. doi:10.1111/j.1365-2958.2005.04920.x

    Article  CAS  PubMed  Google Scholar 

  20. Tjaden B, Goodwin SS, Opdyke JA, Guillier M, Fu DX, Gottesman S, Storz G (2006) Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res 34(9):2791–2802. doi:10.1093/nar/gkl356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Velayudhan J, Castor M, Richardson A, Main-Hester KL, Fang FC (2007) The role of ferritins in the physiology of Salmonella enterica sv. Typhimurium: a unique role for ferritin B in iron–sulphur cluster repair and virulence. Mol Microbiol 63(5):1495–1507. doi:10.1111/j.1365-2958.2007.05600.x

    Article  CAS  PubMed  Google Scholar 

  22. Vogel J, Papenfort K (2006) Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol 9(6):605–611. doi:10.1016/j.mib.2006.10.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Arkansas Biosciences Institute (ABI). We thank Dr. James M. Slauch (University of Illinois at Urbana-Champaign) for providing the Salmonella typhimurium sodBlacZ translational fusion strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Kwon.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.N., Kwon, Y.M. Phenotypic Characterization of Salmonella RyhB-1 Mutations that Modulate Target Regulation. Curr Microbiol 69, 212–217 (2014). https://doi.org/10.1007/s00284-014-0572-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0572-1

Keywords

Navigation