Skip to main content
Log in

Dietary Supplementation of Usnic Acid, an Antimicrobial Compound in Lichens, Does Not Affect Rumen Bacterial Diversity or Density in Reindeer

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Reindeer (Rangifer tarandus tarandus) may include large proportions of lichens in their winter diet. These dietary lichens are rich in phenolic secondary compounds, the most well-known being the antimicrobial usnic acid. Previous studies have shown that reindeer host rumen bacteria resistant to usnic acid and that usnic acid is quickly detoxified in their rumen. In the present study, reindeer (n = 3) were sampled before, during, and after usnic acid supplementation to determine the effect on their rumen microbial ecology. Ad libitum intake of usnic acid averaged up to 278 mg/kg body mass. Population densities of rumen bacteria and methanogenic archaea determined by real-time PCR, ranged from 1.36 × 109 to 11.8 × 109 and 9.0 × 105 to 1.35 × 108 cells/g wet weight, respectively, and the two populations did not change significantly during usnic acid supplementation (repeated measures ANOVA) or vary significantly between the rumen liquid and particle fraction (paired t test). Rumen bacterial community structure determined by denaturing gradient gel electrophoresis did not change in response to intake of usnic acid. Firmicutes (38.7 %) and Bacteriodetes (27.4 %) were prevalent among the 16S rRNA gene sequences (n = 62) from the DGGE gels, but representatives of the phyla Verrucomicrobia (14.5 %) and Proteobacteria (1.6 %) were also detected. Rapid detoxification of the usnic acid or resistance to usnic acid may explain why the diversity of the dominant bacterial populations and the bacterial density in the reindeer rumen does not change during usnic acid supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cocchietto M, Skert N, Nimis P, Sava G (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89:137–146

    Article  CAS  PubMed  Google Scholar 

  3. Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing my RDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dailey RN, Montgomery DL, Ingram JT, Siemion R, Vasquez M, Raisbeck MF (2008) Toxicity of the lichen secondary metabolite (+)-usnic acid in domestic sheep. Vet Pathol 45:19–25

    Article  CAS  PubMed  Google Scholar 

  5. Denman S, McSweeney C (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 58:572–582

    Article  CAS  PubMed  Google Scholar 

  6. Denman S, Tomkins N, McSweeney C (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 62:313–322

    Article  CAS  PubMed  Google Scholar 

  7. Frey JC, Rothman JM, Pell AN, Nizeyi JB, Cranfield MR, Angert ER (2006) Fecal bacterial diversity in a wild gorilla. Appl Environ Microbiol 72:3788–3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  9. Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76:49–63

    Article  CAS  PubMed  Google Scholar 

  10. Ley RE, Haday M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McSweeney CS, Mackie RI (1997) Gastrointestinal detoxification and digestive disorders in ruminant animals. In: Mackie RI, White BA (eds) Gastrointestinal Microbiology, vol 1. Chapman and Hall, New York, pp 583–634

    Chapter  Google Scholar 

  12. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VGH (2012) Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7:1–10

    Article  Google Scholar 

  14. Præsteng KE, Pope PB, Cann IKO, Mackie RI, Mathiesen SD, Folkow LP, Eijsink VGH, Sundset MA (2013) Probiotic dosing of Ruminococcus flavefaciens affects rumen microbiome structure and function in reindeer. Microbial Ecol 66:840–849

    Google Scholar 

  15. Roach JAG, Musser SM, Morehouse K, Woo JYJ (2006) Determination of usnic acid in lichen toxic to elk by liquid chromatography with ultraviolet and tandem mass spectrometry detection. J Agric Food Chem 54:2484–2490

    Article  CAS  PubMed  Google Scholar 

  16. Simpson JM, McCracken VJ, Gaskins HR, Mackie RI (2000) Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Appl Environ Microbiol 66:4705–4714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Simpson JM, McCracken VJ, White BA, Gaskins HR, Mackie RI (1999) Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J Microbiol Methods 36:167–179

    Article  CAS  PubMed  Google Scholar 

  18. Sundset MA, Præsteng KE, Cann IKO, Mathiesen SD, Mackie RI (2007) Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microbial Ecol 54:424–438

    Article  Google Scholar 

  19. Sundset M, Kohn A, Mathiesen SD, Præsteng K (2008) Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen. Naturwissenschaften 95:741–749

    Article  CAS  PubMed  Google Scholar 

  20. Sundset MA, Edwards J, Cheng Y, Senosiain R, Fraile M, Northwood KS, Præsteng KE, Glad T, Mathiesen S, Wright ADG (2009) Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. Microb Ecol 57:335–348

    Article  CAS  PubMed  Google Scholar 

  21. Sundset MA, Edwards JE, Cheng YF, Senosiain RS, Fraile MN, Northwood KS, Præsteng KE, Glad T, Mathiesen SD, Wright ADG (2009) Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea. FEMS Microbiol Ecol 70:553–562

    Article  CAS  PubMed  Google Scholar 

  22. Sundset MA, Barboza PS, Green TK, Folkow LP, Blix AS, Mathiesen SD (2010) Microbial degradation of usnic acid in the reindeer rumen. Naturwissenschaften 97:273–278

    Article  CAS  PubMed  Google Scholar 

  23. Yu Y, Breitbart M, McNairnie P, Rohwer F (2006) FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7:57–65

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Zoetendal EG, Akkermans ADL, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project is funded by The Reindeer Husbandry Research Fund as part of the International Polar Year consortium # 399 EALAT: Climate change and reindeer husbandry. We thank A. Falk, J. Edwards, A. Yannarell, and J.-N. Kim for technical assistance, and R. J. Forster, M. Morrison, and Dr. Zhongtang Yu for advice on the rumen sampling protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica A. Sundset.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Supplementary material 2 (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glad, T., Barboza, P., Mackie, R.I. et al. Dietary Supplementation of Usnic Acid, an Antimicrobial Compound in Lichens, Does Not Affect Rumen Bacterial Diversity or Density in Reindeer. Curr Microbiol 68, 724–728 (2014). https://doi.org/10.1007/s00284-014-0534-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0534-7

Keywords

Navigation