Current Microbiology

, Volume 68, Issue 6, pp 724–728 | Cite as

Dietary Supplementation of Usnic Acid, an Antimicrobial Compound in Lichens, Does Not Affect Rumen Bacterial Diversity or Density in Reindeer

  • Trine Glad
  • Perry Barboza
  • Roderick I. Mackie
  • André-Denis G. Wright
  • Lorenzo Brusetti
  • Svein D. Mathiesen
  • Monica A. SundsetEmail author


Reindeer (Rangifer tarandus tarandus) may include large proportions of lichens in their winter diet. These dietary lichens are rich in phenolic secondary compounds, the most well-known being the antimicrobial usnic acid. Previous studies have shown that reindeer host rumen bacteria resistant to usnic acid and that usnic acid is quickly detoxified in their rumen. In the present study, reindeer (n = 3) were sampled before, during, and after usnic acid supplementation to determine the effect on their rumen microbial ecology. Ad libitum intake of usnic acid averaged up to 278 mg/kg body mass. Population densities of rumen bacteria and methanogenic archaea determined by real-time PCR, ranged from 1.36 × 109 to 11.8 × 109 and 9.0 × 105 to 1.35 × 108 cells/g wet weight, respectively, and the two populations did not change significantly during usnic acid supplementation (repeated measures ANOVA) or vary significantly between the rumen liquid and particle fraction (paired t test). Rumen bacterial community structure determined by denaturing gradient gel electrophoresis did not change in response to intake of usnic acid. Firmicutes (38.7 %) and Bacteriodetes (27.4 %) were prevalent among the 16S rRNA gene sequences (n = 62) from the DGGE gels, but representatives of the phyla Verrucomicrobia (14.5 %) and Proteobacteria (1.6 %) were also detected. Rapid detoxification of the usnic acid or resistance to usnic acid may explain why the diversity of the dominant bacterial populations and the bacterial density in the reindeer rumen does not change during usnic acid supplementation.


Firmicutes Bacteroidetes Usnic Acid Verrucomicrobia Rumen Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project is funded by The Reindeer Husbandry Research Fund as part of the International Polar Year consortium # 399 EALAT: Climate change and reindeer husbandry. We thank A. Falk, J. Edwards, A. Yannarell, and J.-N. Kim for technical assistance, and R. J. Forster, M. Morrison, and Dr. Zhongtang Yu for advice on the rumen sampling protocol.

Supplementary material

284_2014_534_MOESM1_ESM.docx (43 kb)
Supplementary material 1 (DOCX 42 kb)
284_2014_534_MOESM2_ESM.docx (47 kb)
Supplementary material 2 (DOCX 47 kb)


  1. 1.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Cocchietto M, Skert N, Nimis P, Sava G (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89:137–146PubMedCrossRefGoogle Scholar
  3. 3.
    Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing my RDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Dailey RN, Montgomery DL, Ingram JT, Siemion R, Vasquez M, Raisbeck MF (2008) Toxicity of the lichen secondary metabolite (+)-usnic acid in domestic sheep. Vet Pathol 45:19–25PubMedCrossRefGoogle Scholar
  5. 5.
    Denman S, McSweeney C (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 58:572–582PubMedCrossRefGoogle Scholar
  6. 6.
    Denman S, Tomkins N, McSweeney C (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 62:313–322PubMedCrossRefGoogle Scholar
  7. 7.
    Frey JC, Rothman JM, Pell AN, Nizeyi JB, Cranfield MR, Angert ER (2006) Fecal bacterial diversity in a wild gorilla. Appl Environ Microbiol 72:3788–3792PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319PubMedCrossRefGoogle Scholar
  9. 9.
    Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76:49–63PubMedCrossRefGoogle Scholar
  10. 10.
    Ley RE, Haday M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    McSweeney CS, Mackie RI (1997) Gastrointestinal detoxification and digestive disorders in ruminant animals. In: Mackie RI, White BA (eds) Gastrointestinal Microbiology, vol 1. Chapman and Hall, New York, pp 583–634CrossRefGoogle Scholar
  12. 12.
    Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedPubMedCentralGoogle Scholar
  13. 13.
    Pope PB, Mackenzie AK, Gregor I, Smith W, Sundset MA, McHardy AC, Morrison M, Eijsink VGH (2012) Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7:1–10CrossRefGoogle Scholar
  14. 14.
    Præsteng KE, Pope PB, Cann IKO, Mackie RI, Mathiesen SD, Folkow LP, Eijsink VGH, Sundset MA (2013) Probiotic dosing of Ruminococcus flavefaciens affects rumen microbiome structure and function in reindeer. Microbial Ecol 66:840–849Google Scholar
  15. 15.
    Roach JAG, Musser SM, Morehouse K, Woo JYJ (2006) Determination of usnic acid in lichen toxic to elk by liquid chromatography with ultraviolet and tandem mass spectrometry detection. J Agric Food Chem 54:2484–2490PubMedCrossRefGoogle Scholar
  16. 16.
    Simpson JM, McCracken VJ, Gaskins HR, Mackie RI (2000) Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Appl Environ Microbiol 66:4705–4714PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Simpson JM, McCracken VJ, White BA, Gaskins HR, Mackie RI (1999) Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J Microbiol Methods 36:167–179PubMedCrossRefGoogle Scholar
  18. 18.
    Sundset MA, Præsteng KE, Cann IKO, Mathiesen SD, Mackie RI (2007) Novel rumen bacterial diversity in two geographically separated sub-species of reindeer. Microbial Ecol 54:424–438CrossRefGoogle Scholar
  19. 19.
    Sundset M, Kohn A, Mathiesen SD, Præsteng K (2008) Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen. Naturwissenschaften 95:741–749PubMedCrossRefGoogle Scholar
  20. 20.
    Sundset MA, Edwards J, Cheng Y, Senosiain R, Fraile M, Northwood KS, Præsteng KE, Glad T, Mathiesen S, Wright ADG (2009) Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. Microb Ecol 57:335–348PubMedCrossRefGoogle Scholar
  21. 21.
    Sundset MA, Edwards JE, Cheng YF, Senosiain RS, Fraile MN, Northwood KS, Præsteng KE, Glad T, Mathiesen SD, Wright ADG (2009) Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea. FEMS Microbiol Ecol 70:553–562PubMedCrossRefGoogle Scholar
  22. 22.
    Sundset MA, Barboza PS, Green TK, Folkow LP, Blix AS, Mathiesen SD (2010) Microbial degradation of usnic acid in the reindeer rumen. Naturwissenschaften 97:273–278PubMedCrossRefGoogle Scholar
  23. 23.
    Yu Y, Breitbart M, McNairnie P, Rohwer F (2006) FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7:57–65PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Zoetendal EG, Akkermans ADL, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Trine Glad
    • 1
  • Perry Barboza
    • 2
  • Roderick I. Mackie
    • 3
  • André-Denis G. Wright
    • 4
  • Lorenzo Brusetti
    • 5
  • Svein D. Mathiesen
    • 6
  • Monica A. Sundset
    • 1
    Email author
  1. 1.Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
  2. 2.Institute of Arctic Biology and Department of Biology and WildlifeUniversity of AlaskaFairbanksUSA
  3. 3.Department of Animal SciencesUniversity of IllinoisUrbana-ChampaignUSA
  4. 4.Department of Animal ScienceUniversity of VermontBurlingtonUSA
  5. 5.Faculty of Science and TechnologyFree University of BozenBolzanoItaly
  6. 6.The Norwegian School of Veterinary ScienceTromsøNorway

Personalised recommendations